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Abstract
The knowledge of linear and non-linear errors in circular

accelerator optics is very crucial for controlling and com-
pensating resonances and their consequent beam losses.
This is indispensable, especially for high intensity ma-
chines. Fortunately, the relationship between the recorded
beam offset signals at the BPMs is a manifestation of the
accelerator optics, and can therefore be exploited in the
determination of the optics linear and non-linear compo-
nents. We propose a novel method for estimating lattice
non-linear components located in-between the positions of
two BPMs by analyzing the beam offset signals of a BPMs
triple containing these two BPMs. Depending on the non-
linear components in-between the locations of the BPMs
triple, the relationship between the beam offsets follows
a multivariate polynomial. After calculating the covari-
ance matrix of the polynomial terms, the Generalized Total
Least Squares method is used to f nd the model parameters,
and thus the non-linear components. Finally, a bootstrap
technique is used to determine conf dence intervals of the
estimated values. Results for synthetic data are shown.

INTRODUCTION
In high energy particle accelerators, magnetic f elds are

usually employed for beam focusing and def ection, and
electric f elds are used for beam acceleration. Synchrotrons
use cavities to generate accelerating electric f elds synchro-
nized with the beam, and electric magnets to generate fo-
cusing and def ecting magnetic f elds with a strength de-
pending on beam energy.
Constant magnetic f elds generated by dipole magnets

are usually used for beam def ection, and constant gra-
dient f elds generated by quadrupole magnets are usually
used for beam focusing. Periodic sequences of focus-
ing/defocusing quadrupole magnets called FODO cells are
usually used for focusing in horizontal and vertical direc-
tions. This is called strong focusing. Furthermore, other
non-linear magnetic f elds generated by sextupole or oc-
tupole magnets can be applied on purpose, e.g., for chro-
maticity compensation.
In addtion to the wanted magnetic f elds, the magnets can

generate unwanted spurious linear and non-linear f elds [1]
due to fabrication errors or aging. These error f elds in the
magnets excite undesired resonances leading together with
the space charge tune spread to long term beam losses and
reducing dynamic aperture [2, 3]. Therefore, these mag-
nets errors and their impact on the beam must be studied
and evaluated in order to control and compensate them for
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better machine operation, such that the demand for higher
beam intensity can be fulf lled. Thus, the measurement of
the linear and non-linear error components in circular ac-
celerator optics is indispensable, especially for high inten-
sity machines.
The utilization of non-linear chromaticity measurement

in determining the non-linear optics model has been pre-
sented in [4, 5]. In [2, 3, 6], The Non-Linear Tune Re-
sponse Matrix (NTRM) technique has been proposed to be
used to diagnose non-linear f eld components. These meth-
ods are however very costly and require long measurement
campaigns apart from having diff culties in estimating non-
linear components with mixed orders.
In this work, we address a new Lightweight approach

for determining optics linear and non-linear components
in a circular particle accelerator without requiring heavy
measurement campaigns. The relationship between the
recorded beam offset signals at the Beam Position Moni-
tors (BPMs) is a manifestation of the accelerator optics, and
can be therefore exploited in the determination of the op-
tics linear and non-linear components. A pencil like beam
is preferred here in order to get rid of f nite beam size ef-
fects on the signals. Such a beam can be reached by an
optimized one turn injection [6]. We estimate the lattice
non-linear components located in-between the positions of
two BPMs by analyzing the beam offset signals of a BPMs
triple containing these two BPMs. The Generalized To-
tal Least Squares method is used for parameter estimation,
and a bootstrap technique is used to determine conf dence
intervals of the estimated values.

SYSTEM MODEL
Three coordinate axes are def ned for each position along

the synchrotron ring, which determine the different beam
offsets from the closed orbit. Fig. 1 shows the transversal
coordinates: x for horizontal and y for vertical offset. The
longitudinal coordinate is marked by s.

BPMM

BPM1

BPM2

BPMi

x

y

s

Beam

Figure 1: Local coordinates and BPMs.

Multiple BPMs for acquiring beam horizontal and verti-
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cal offsets are placed at different positions along the accel-
erator ring. In Fig. 1, an accelerator ring with M BPMs is
depicted. The BPM signals must be delayed accordingly
such that they correspond to the same beam segment or
bunch at every sample.
Let xi(t) and yi(t) be the signals at the BPMi at time

t, which is located at the position si along the accelerator
ring, where i ∈ {1, 2, · · · , M}. These signals correspond
to the actual beam horizontal and vertical offsets x̃i(t) and
ỹi(t) at si perturbed by noise terms zxi(t) and zyi(t), re-
spectively. This means

(

xi(t)
yi(t)

)

=

(

x̃i(t)
ỹi(t)

)

+

(

zxi(t)
zyi(t)

)

(1)

The basic focusing optics is composed of FODO cells.
Furthermore, other non-linear components are existing
along the accelerator ring. These non-linear components
could be put on purpose, like chromaticity compensating
sextupoles, or a dipole magnet non-linear error with an in-
tegrated strength located at some position. In Fig. 2, the
optics model is depicted with three BPMs. Focusing and
defocusing magnets as well as a non-linear component are
shown as Ni. Multiple non-linear components could exist
as well.

Ni

BPMi1 BPMi2 BPMi3

Figure 2: Optics model.

For the sake of simplicity, we assume that non-linear
components exist between BPMi2 and BPMi3 and not be-
tween BPMi1 and BPMi2. This assumption would not af-
fect the applicability of our approach, if there are no non-
linear components between at least two BPMs. In this case,
one could take a BPM triple containing these two BPMs.
Such BPMs could be for instance bounding a section with-
out magnets errors, or without magnets at all (a drift tube).
Under this assumption, beam offset and angle just before

the non-linear components can be written in linear depen-
dence on the beam offsets at BPMi1 and BPMi2, i.e.,









xNi(t)
xNi(t)

′

yNi(t)
yNi(t)

′









= Mi









x̃i1(t)
x̃i2(t)
ỹi1(t)
ỹi2(t)









. (2)

Since the beam offsets at BPMi3 can be written as a
polynomial function of the beam status (horizontal and ver-
tical offsets and angles) before the non-linear components,
one can write it as a polynomial of the beam offsets at
BPMi1 and BPMi2 depending on the orders and number
of the non-linear components. Therefore,

(

x̃i3(t)
ỹi3(t)

)

= f(x̃i1(t), x̃i2(t), ỹi1(t), ỹi2(t)) (3)

where f(.) is a multivariate polynomial of order depending
on the non-linear components. Hence, one can write for an
orderN

x̃i3(t) =
∑

i+j+k+l≤N

αijklx̃i1(t)
ix̃i2(t)

j ỹi1(t)
kỹi2(t)

l

(4a)
ỹi3(t) =

∑

i+j+k+l≤N

βijklx̃i1(t)
ix̃i2(t)

j ỹi1(t)
kỹi2(t)

l,

(4b)
where the model parameters αijkl and βijkl are manifesta-
tion of the linear and non-linear optics between BPMi1 and
BPMi3.

PARAMETER ESTIMATION
The measurement and variable dependency model de-

scribed in Eq. (1) and Eq. (4) constitute an errors-in-
variables regression model. Such a model can be solved
using a Total Least Squares (TLS) approach.
After collecting K measurements from each BPM, the

TLS problem can be stated as

Y ≈ Xβ, (5)

where

Y =







xi3(1) yi3(1)
...

...
xi3(K) yi3(K)






∈ RK×2, (6)

and

X =







X1(1) · · · XT (1)
...

...
...

X1(K) · · · XT (K)






∈ RK×T , (7)

where X1(1), · · · , XT (i) are the polynomial terms
xi1(t)

ixi2(t)
jyi1(t)

kyi2(t)
l, i+ j + k + l ≤ N .

β denotes the model parameters αijkl and βijkl stacked ac-
cordingly. For different plynomial terms in the horizon-
tal and vertical direction, the equation must be splitted and
solved separately for each direction.
The matrices X and Y contain values from the actual

beam offsets and noise perturbation terms, i.e.,

X = X̃+ ZX, (8)

Y = Ỹ + ZY. (9)

For the TLS estimator of the true parameters in β to be
consistent, i.e., βTLS → βtrue in probability as K → ∞,
vec([ZX ZY]) must be a zero mean random vector with a
multiple of the identity covariance matrix [7, 8].
This condition is unfortunately not fulf lled according

to the given structure of X. Therefore, preprocessing
(prewhitening) must be undertaken on the data before the
TLS estimator can be applied as follows:

1. Estimate the covariance matrix RZZ for the rows of
the perturbation matrix ZX

MOPF28 Proceedings of IBIC2013, Oxford, UK

ISBN 978-3-95450-127-4

C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

280 Beam Charge Monitors and General Diagnostics



2. calculateXp = X R
− 1

2

ZZ

3. apply the TLS estimator on

Cp = [Xp Y] (10)

to calculate the parameters βTLS,p.

The estimate of the actual parameters will be then given
by

βTLS = R
− 1

2

ZZ βTLS,p. (11)

Let Cp = UΣV
T be the singular value decom-

position of of Cp def ned in Eq. (10), where Σ =
diag(σ1, · · · , σT+2), and σ1 ≥ · · · ≥ σT+2 are the sin-
gular values of C. The TLS solution for the preprocessed
data can be written using Matlab notation as [7, 8]

βTLS,p = −V(1:T,T+1:T+2)V(T+1:T+2,T+1:T+2)
−1.

(12)
The corresponding TLS residuals estimate is given by

∆CTLS,p = −Udiag(0, · · · , 0, σT+1, σT+2)V
T . (13)

Assuming known linear optics along the path of interest,
i.e., between BPMi1 and BPMi3, the strength and location
of the non-linear components can be determined through
exhaustive search to meet the estimated parameters.

CONFIDENCE INTERVALS
A very important aspect of the parameter estimates is

their reliability. Since the parameter estimation is applied
on noised measurements of the beam offsets, the resulting
estimates will be noised as well. Therefore, one is inter-
ested in knowing how far the estimates are affected by the
measurement noise.
Conf dence intervals, which give interval estimates of

the parameters, are very good indication of the parameter
estimates reliability. They establish some statistical conf -
dence for the parameters of interest [9].
A conf dence interval of some parameter consists of two

bounds, where the true value of the parameter lies between
these bounds with a specif ed probability.
The asymptotic distribution of the estimates can ideally

be used to determine conf dence intervals. Under some
condition, the TLS estimator has a zero mean multivariate
normal asymptotic distribution [10]. The covariance ma-
trix of this distribution has a known form, if the moments
up to the fourth order of the rows of the errors matrix are
of the same form of a normal distribution [10, 11]. The
covariance matrix formula in this case depends on the true
value of the parameters β, which could be replaced by its
consistent estimate.
In our application however, the moments up to the fourth

order of the rows of the errors matrix are not of the same
form of a normal distribution. The formula for the covari-
ance matrix of the asymptotic distribution gets therefore
complicated, and cannot be calculated. Thus, a bootstrap
techniques remain as possible ways to calculate conf dence
intervals for the estimated parameters.

Bootstrap Conf dence Intervals
The bootstrap is a computer intensive method for statis-

tical inference using the available data without knowing the
population distribution.
Let C = [X Y]. The non-parametric bootstrap pro-

cedure to f nd the empirical distribution of a parameter
β̂ij = (βTLS)(ij) is given as in Algorithm 1 [9, 11, 12]:

1.1 Calculate β̂ij based onC;
1.2 for k = 1 toK do
1.3 constructC∗(k) ∈ RK×(T+2) by resampling

with replacement from the rows ofC;
1.4 recalculate β̂∗(k)

ij based onC∗(k);
1.5 end
1.6 sort the items β̂∗(k)

ij into an increasing order such
that β̂∗(1)

ij ≤ · · · ≤ β̂
∗(K)
ij ;

Algorithm 1: Non-parametric bootstrap

The asymptotic consistency of the non-parametric boot-
strap procedure for the TLS estimator has been already
shown in [11].
The desired bootstrap interval with conf dence probabil-

ity 1− α is (β̂∗(q1)
ij , β̂

∗(q2)
ij ), where q1 is the integer part of

K α
2 and q2 = K − q1 + 1.
The strength of the bootstrap comes from its ability for

statistical inference even in complicated situations, as well
as its higher accuracy compared to the normal approxima-
tion approach [12]. Higher order accuracy of the bootstrap
can be achieved by dealing the studentized distribution of
the estimators [9, 12]. This bootstrap technique is called
percentile-t bootstrap, and can be performed as in Algo-
rithm 2 [9, 12]:

2.1 Calculate β̂ij based onC;
2.2 calculate σ

β̂ij
using bootstrap;

2.3 for k = 1 toK do
2.4 constructC∗(k) ∈ RK×(T+2) by resampling

with replacement from the rows ofC;
2.5 recalculate β̂∗(k)

ij based onC∗(k);
2.6 calculate σ

β̂
∗(k)
ij

using nested bootstrap;

2.7 calculate β∗(k)
γ =

β̂
∗(k)
ij −β̂ij

σ
β̂
∗(k)
ij

;

2.8 end
2.9 sort the items β∗(k)

γ into an increasing order such
that β∗(1)

γ ≤ · · · ≤ β
∗(K)
γ ;

Algorithm 2: Percentile-t bootstrap

Thus, the percentile-t conf dence interval is (β̂ij −

σ
β̂ij

β
∗(q2)
γ , β̂ij − σ

β̂ij
β
∗(q1)
γ ).
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The bootstrap technique can be performed on the para-
metric model of the data. In this case, the residuals and the
estimated beam offset data for the TLS estimator could be
calculated using Eq. (13), similar to [13]. Consequently,
one could add the corresponding resamples with replace-
ment from the residuals to the estimated beam offsets, and
proceed with constructing new matrices X and Y as de-
f ned in Eq. (7) and Eq. (6) and solving the the model
described in Eq. (5). The conf dence interval can be thus
calculated by repeating the previous technique many times.

RESULTS
An accelerator section with 3 BPMs containing a sex-

tupolar magnet error with a magnetic f eld of the form in
vertical direction

−→
B y = k(x2 − y2)−→e y is considered. The

beam offset relation polynomial for horizontal beam oscil-
lation of this scenario at BPM3 is described in Table 1.

Table 1: Optics Model Polynomial

Term x1 x2 x2
1 x2

2 x1x2 y21 y22 y1y2

Coef. P1 P2 P3 P4 P5 P6 P7 P8
Value 1 -2 0.6 -0.7 0.7 0.1 -0.1 0.4

We have generated data for a one bunch beam oscillat-
ing over 1000 turns considering the model polynomial with
horizontal and vertical tunes of 0.29 and 0.19, respectively.
Fig. 3 shows the interval estimates the model parame-

ters using our approach. The measurement noise standard
deviation is 20% of the smallest oscillation amplitude.
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Figure 3: Bootstrap interval estimates.

The results in Fig. 3 can be used to determine the
strength and location of the sextupolar magnet error using
an exhaustive search. The parameters with a tighter con-
f dence intervals can be given more weight in the search
objective function.
In the future, we are going to employ statistical hypoth-

esis testing to detect the order of the model polynomial and
non-linear magnet errors.
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