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1. A brief introduction to beam 
size measurement

through 
SR interferometry



To measure a size of object by means of spatial 
coherence of light (interferometry) was first 
proposed by H. Fizeau in 1868!

This method was realized by A.A. Michelson as 
the measurement of apparent diameter of star
with his stellar interferometer in 1921.

This principle was now known as “ Van Cittert-
Zernike theorem”  because of their works;
1934 Van Cittert
1938 Zernike.



Michelson’s stellar interferometer
Wilson mountain observatory



Spatial coherence and profile of the object
Van Cittert-Zernike theorem

According to van Cittert-Zernike theorem, with the condition of 
light is 1st order temporal incoherent (no phase correlation), the 
complex degree of spatial coherence γ(υx,υy) is given by the Fourier 
Transform of the spatial profile f(x,y) of the object (beam) at longer 
wavelengths such as visible light.
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where υx,υyare spatial frequencies given by;
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Typical arrangement for refractive interferometer  
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Typical interferogram in vertical direction at the Photon Factory (1994).
D=10mm



Result of spatial coherence measurement  

(1994)



Phase of the complex degree of spatial coherence 
vertical axis is phase in radian



Vertical beam profile obtained by a Fourier transform of 
the complex degree of coherence. 

Reconstruction of beam profile  by Fourier 
transform

Beam size (mm)



Beam profile taken with 
an imaging system

Comparison between image



Vertical beam profile obtained by Fourier Cosine transform
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(a) vertical 
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                  (b) horizontal 
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Vertical and 
horizontal beam size 
at the Photon 
Factory



We can also evaluate the RMS. beam size
from one data of visibility, which is measured
at a fixed separation of double slit.  The
RMS beam size σbeam  is given by , 

where γ denotes the visibility, which is
measured at a double slit separation of D. 
 
 To consider that in the case to make an image,
the resolution is limited by diffraction which is a
Fourier transform using a given region of spatial
frequency space ( measurement in the real space).
 
 In the case of interferometry, we can measure a
small beam size with limited region of spatial
frequency space by means of these two methods
(measurement in the inverse space). 
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±3μm

Horizontal beam size measurement



±1μm

Vertical beam size measurement



2.Theoretical resolution of 
interferometry

Uncertainty principle
in phase of light



Uncertainty principal in imaging.

Δθ/λ·Δx≥1,

So, large opening of light will 
necessary to obtain a good spatial 
resolution. 

Δθ



Uncertainty principal in interferometry ?



Mode 1

Mode 2

Measure the correlation of 
light phase in two modes

Function of the 1st order 
interferometery

ψ1

ψ2

ψ=ψ1+ψ2

Uncertainty principal in interferometry



Mode 1

Mode 2

Measure the correlation of 
light phase in two modes

Function of the 1st order 
interferometery

ψ1

ψ2

ψ=ψ1+ψ2

Uncertainty principal in interferometry

Uncertainty in 
Phase Δφ



The interference fringe will be 
smeared by the uncertainty of phase.
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According to quantum optics, 

Uncertainty principle concerning to 
phase is given by

Δφ·ΔN≥1/2

where  ΔN is uncertainty of photon 
number.



We cannot 
observe 
interference fringe 
with small 
number of 
photons!





Actually, different from imaging, we 
can use large number of photons 
(intensity), so uncertainty in phase is 
very small (this is the reason light 
seems wave) 



A comparison between imaging, 
we can use large number of photons
(intensity), so uncertainty in phase is 
very small (this is the reason light 
seems wave) 

As a result, theoretical resolution is 
very high, and practically resolution 
will be limited by measurement error 
such as baseline noise in detector.
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Small size of the 
beam will give a 
good visibility

Strongly 
influenced by 
baseline noise!



Error transfer 
from Δγ to Δσ
with constant Δγ
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So, important point in small beam 
size measurement 

is 
How to escape from noise in 
visibility measurement



1. Use larger separation of double slit

2. Use shorter wavelength

Both of this will reduce visibility of 
interferogram



1. Use larger separation of double slit
limited by opening angle of SR

2. Use shorter wavelength
mainly limited by chromatic 
aberrations in focusing optics.



Elimination of 
chromatic 
aberration at 
400nm is very 
difficult due to 
large partial 
dispersion ratio 
of glass

Refractive index of BK7 and 
SF2 as a function of wavelength



Chromatic aberration 
(longitudinal focal sift in 
typical achromatic 
design

F=600mm



Interferogram with 
chromatic aberration 
and without 
chromatic aberration.
λ=400nm, Δλ=80nm
Lens:achromat
D=45mm f=600mm

Δλ=80nm



Results by normal refractive interferometer 
using λ=400nm

We cannot see any difference
In coupling correction!



If the chromatic aberration at 
400nm is measure source of error 
in 5μm range beam size 
measurement,   

Use reflective optics!
Reflective system has no chromatic 
aberration.



3.  Reflective interferometer



 
 

Double slit 

Newtonian arrengement of optics 

Optical flat Parabolic mirror 

Band pass filter

Gran-tayler prism

Interferogram 

Possible arrangement for reflective optics for 
interferometer
1. On axis arrangement



 

Cassegrainian arrengement of optics 

Hyperbolic mirror Parabolic mirror 

Band pass filter

Gran-tayler prism

Interferogram

Double slit 



 

Herschelian arrengement of optics 

Optical flat (off axis) Parabolic mirror 

Band pass filter

Gran-tayler prism

Interferogram 

Double slit 

2. Off axis arrangement



Measured interferogram
At ATF, KEK

Result of beam size is 
4.73μm±0.55μm



The x-y coupling is controlled by the strength of the skew Q 
at ATF



Remember same results by normal refractive 
interferometer using λ=400nm



The reflective interferometer is more useful 
than refractive interferometer especially 
for shorter wavelength range.

Actually, it is chromatic aberration-free, 
and reflectors are cheaper than lenses in 
large aperture.
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If  we can not use more shorter wave 
length,
How we can do for more smaller beam 
size measurement?



Result of visibility for beam size  5.8μm (l=550nm) with several 
separation of double slit.



Result of visibility for beam size  5.8μm (l=550nm) with several 
separation of double slit.

We hardly recognize saturation 
in visibility from this figure, let 
us convert visibility into beam 
size! 



Convert visibility into beam size.   We can see clear saturation  in 
smaller double slit range which has visibility near 1.

0.86

0.92

Saturation is significant in 
visibility better than 0.9 



4. Imbalanced input method

Another method to escape from noise
for 

more small beamsize measurement
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Let’s us consider equation for interferogram.

In this equation,  the term “γ” has not only real part 
of complex degree of spatial coherence but also 
intensity factor! 



If I1=I2, γ is just equal to real part of complex 
degree of spatial coherence , but if I1 ≠ I2, we must 
take into account of intensity factor;
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This intensity factor is always smaller than 1 
for I1 ≠ I2.





Since intensity factor is smaller than 1 for I1 ≠ 
I2, the “γ” will observed smaller than real part 
of complex degree of spatial coherence.

This means beam size will observed larger 
than primary size and we know ratio 
between observed size and primary size.

This is magnification!
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γ=0.9

γ=0.8

We can use magnification range up to 2 
for I1 : I2=1 : 0.2 or 3 for 1 : 0.05.



In interferometry, we can 
magnify beam size by very 
simple way;

applying imbalance input for 
double slit!



 

Herschelian arrengement of optics 

Optical flat (off axis) Parabolic mirror 

Band pass filter

Gran-tayler prism

Interferogram

Double slit 

half ND 
filter

Setup for imbalanced input by half ND filter



Appling unbalance method for D=30mm.  
I1 : I2 =0.853:0.249

We hardly recognize effect of 
unbalanced input for saturation 
in visibility from this figure, let 
us convert visibility into beam 
size! 



Unbalanced 



Further result of 
unbalanced technique, 
please hear presentation 
of Dr. Mark Boland 



Conclusion

Smallest result of beam size at ATF is 4.7μm with 
reflective SR interferometer using double slit 
separation of 45-55mm, λ=400nm.  This size is 
almost small limit with equal input method.

When we will apply imbalanced method;

With magnification factor 2         2.4μm
With magnification factor 3         1.6μm

We are waiting beam size in this range!



Thank you very much 
for your attention.
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