Author: Yuan, R.X.
Paper Title Page
MOPA45 Study of Beam Length Measurement based on TM010 Mode 162
 
  • R.X. Yuan, Y.B. Leng, L.Y. Yu, W.M. Zhou
    SINAP, Shanghai, People's Republic of China
 
  Beam length measurement in frequency domain is a familiar method, and the resolution is seriously limited by the system signal-noise-ratio (SNR) and the beam length measured. Usually this method can only obtain the resolution about ~10ps with beam length ~30ps when using signal from button or stripline BPM. But in FEL case, the beam length is the ps or sub-ps order. The paper discusses the probability of beam length measurement based on the TM010 mode in FEL case. When adopting High Order Mode(HOM) reject and system gain control, the system SNR can arrive at 110dB and the resolution can achieve 30fs with beam length ps or sub-ps.  
 
TUPA22 Design of RF Front End for Cavity Beam Position Monitor based on ICs 383
 
  • B.P. Wang, Z.C. Chen, Y.B. Leng, L.Y. Yu, R.X. Yuan, W.M. Zhou
    SINAP, Shanghai, People's Republic of China
 
  RF front end has the significant impact on the performance of cavity beam position monitor (CBPM) which is indispensable beam instrumentation component in free electron laser(FEL) or linear collider facility. With many new advances in data converter and radio technology, complex RF front end design has been greatly simplified. Now based on digital intermediate frequency (IF) receiver architecture, a new RF front end for (CBPM) has been designed and fabricated using surface mount component on print circuit board (PCB). The front end contains analog-digital converter used to digitize the IF signals. The whole system would be integrated to a digital board developed by our lab to produce the dedicated signal processor for CBPM. There is an Xilinx Vertex-5 FPGA device on the digital board and relevant signal processing algorithm has been implemented on it using VHDL. The details about design and test results would be introduced blow.