Author: Lee, J.M.
Paper Title Page
TUPA34 Inverse Response Matrix Computation for the Storage Ring Slow Orbit Feedback Control: Synthesized Topological Inversion Computation 431
 
  • J.M. Lee, J.Y. Huang, C. Kim
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Using the derivative response matrix between BPM-data and MPS-setting, we described the inverse computation methodology for the storage ring orbit feedback control. Practically useful for SOFB with assistance of FOFB, the inverse of SVD manipulation is less efficient because a type of consecutive instability noise irreversibly accumulates in the beam trajectory deviation. In contrast, a novel numerical recipe based on topological math can lead to a self-consistent solution, dramatically suppressing ill-posed instability problems. This approach, known as a singularity regularization method, makes it feasible to compute a system-matched de-noising filter. The response matrix in H/V dimensions reflects a global beam dynamics along the storage ring lattices. Matrix refinement manipulatcan can be made to filter out the uncertainty of measurement errors escaping from beam dynamics constraints. Then we believe that algorithm filter can be effective as a software part of FOFB control. Our math STIC (Synthesized Topological Inversion Computation*) appears to be the most reliable inverse computation methodology. Our PLS-2 response matrix will be presented to explain our ORBIT-STIC test.
* Jay Min Lee et al, presented at the 15th International Conference on X-ray Absorption Fine Structure, Beijing, July 22-28, 2012.