Author: Hori, Y.
Paper Title Page
TUPB60 Beam Diagnostics of Central Japan Synchrotron Radiation Research Facility Accelerator Complex 486
 
  • M. Hosaka, A. Mano, H. Morimoto, E. Nakamura, K. Takami, T. Takano, Y. Takashima, N. Yamamoto
    Nagoya University, Nagoya, Japan
  • Y. Hori
    KEK, Ibaraki, Japan
  • M. Katoh
    UVSOR, Okazaki, Japan
  • S. Koda
    SAGA, Tosu, Japan
  • A. Murata, K. Nakayama
    Toshiba, Yokohama, Japan
  • S. Sasaki
    JASRI/SPring-8, Hyogo-ken, Japan
 
  A new synchrotron radiation facility, Central Japan Synchrotron Radiation Research Facility is built in Aichi area. The light source accelerator complex consists of a 1.2 GeV compact electron storage ring and a full energy injector for top-up operation. The key equipments of the accelerator are four 5 T superconductive bending magnets. Although the acceleration energy of the storage ring is relatively low, synchrotron radiation from the superconductive bending magnet reaches hard X-ray region and can be provided for more than 10 beamlines. Construction of the facility started in 2010 and finished in Apr. 2012. Commissioning of the accelerator complex started in Mar. 2012. We adapted a turn-by-turn beam position monitoring system based on a digital oscilloscope developed at the UVSOR. In the presentation, we report on details of beam diagnostics conducted during the commissioning.  
 
TUPB73 Development of a Beam Profile Monitor using Nitrogen-Molecular Jet for Intense Beams 511
 
  • Y. Hashimoto, T. Toyama
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • T. Fujisawa, T.M. Murakami, K. Noda
    NIRS, Chiba-shi, Japan
  • Y. Hori, S. Muto, K. Yoshimura
    KEK, Ibaraki, Japan
  • T. Morimoto
    Morimoto Engineering, Iruma, Saitama, Japan
  • D. Ohsawa
    Kyoto University, Radioisotope Research Center, Kyoto-shi, Japan
 
  Funding: This work was supported by MEXT/JSPS KAKENHI Grant Number of 24310079 (Grant-in-Aid for Scientific Research(B)).
A non-destructive beam profile monitor using a sheeted jet beam of nitrogen molecular as a target has been developed for intense ion beams. The pressure of the sheeted molecular beam was 5 x 10-4 Pa at the beam collision point. A light emitted from excited nitrogen by an ion beam collision is measured by a high sensitive camera with a radiation resistant image intensifier. Verification of such a principle was already demonstrated with low-energy ion beams[1]. In this paper, some actual designs for intense beams of the J-PARC MR will be discussed mainly as bellow, intensity upgrade of the jet beam production, configuration of the detection chamber and its apparatus placed beam collision point, and the optical system for the light detection.
*[1] Y. Hashimoto, et al., Proc. of IPAC'10, Kyoto, Japan, p.987-989.