

Integrating the TRACK beam simulation code to improve ATLAS operations

Clayton Dickerson, Chris Peters, Brahim Mustapha

HIAT15 9-September 2015

Outline

- The ATLAS accelerator
- Goals for the TRACK implementation
- TRACK particle tracking software
 - Background
 - Accuracy
- Integration into the ATLAS control system
- TRACK results with ATLAS
- Summary

ATLAS flexibility

- 2 sources, 6 experimental target lines
- lons: H to U; energies: ~0.5 to >15 MeV/u
- 1-2 experiments per week
- **RIBs from CARIBU and in-flight production**

CARIBU EBIS: Design to Operation | RISP visit | Dickerson | 3-September 2015

Target

Fragmen Mass Analyze

Gammasphere

Goals for TRACK at ATLAS

- Increase tuning efficiency
 - Highlight areas of beam loss or distortion
 - Predict component fields for previously unencountered situations
 - Machine reconfiguration, planned (AIRIS) or unplanned (F cryostat He leak)
 - In-flight RIB production
- Graphics outputs beam evolution through the accelerator are a great training aid
- Highlight differences between expected and observed accelerator performance to develop a more accurate understanding and model of the machine

TRACK

- Developed by ANL personnel
- 3 dimensional particle tracking software
- Integrates the equations of motion
- Includes Poisson solver to account for space charge forces
- Internal analytic field solutions for some basic elements
- User defined fields from 3rd party solvers
- Matching and optimization routines

TRACK for accelerator operations

- Pros
 - Very accurate
 - Integration steps can be defined per element
 - Macro-particles more realistic than envelope codes
 - Space charge effects are included
 - Code development on site
- Cons
 - Too slow for real time beam simulation

TRACK accuracy

- Good agreement between simulation and measurement for RFQ commissioning
- RFQ input measured with pepper pot
- Outputs measured with wire scanner, bunch shape monitor, and analyzing dipole magnet

ATLAS control system

- TRACK input files are build from the ATLAS control system databases
- The ATLAS control system runs on LINUX based machines
- We use the LINUX version of TRACK
 - Unfortunately no graphical output
- Control software is Vsystem (Vista Control Systems LLC)

Building the TRACK input files

- Two main TRACK input files
 - Accelerator component configuration: accelerator layout, device lengths, apertures, field amplitudes, effective lengths, bend radii, etc
 - Beam configuration: A, q, starting energy, 4d or 6d distribution, ΔE , matching conditions, optimization parameters

Accelerator configuration file generation

TRACK at ATLAS | HIAT15 | Dickerson | 9-September 2015

Scaling - resonator fields

From resonator phase scans

- $V_{EFF} = \Delta E / [q TTF cos(\phi_s)]$

■ With TRACK field normalization and RF control module control voltage → scale factor from machine control to TRACK amplitude

Normalized Counts

Better statistics available with logged scans

Res. #	⁴⁵ Sc ¹¹⁺ ΔE (φ _s =0), MeV	V _{EFF} , MV
R211	25.7	2.45
R212	26.86	2.47
R213	23.51	2.14
R214	26.38	2.41
R215	25.18	2.35
R216	26.77	2.55
R217	31.48	3.05

TRACK at ATLAS | HIAT15 | Dickerson | 9-September 2015

Scaling - magnets

- Hall probe
 - Uniform field region for dipoles
 - Pole tips for quadrupoles
- Quad manufacturer specification 4.9 Gs/(mm-A)
- Pole tip at r = 31.75 mm => 0.156 kGs/A

Quadrupole results

Beam configuration file generation

Current beam distribution diagnostics

Quads and profile monitors throughout

Beam distributions

- 3rd party software
- ε_x, ε_y manually xfer to config file
- In future software incorporated into control system

TRACK graphical output for ATLAS

 TRACK.exe for LINUX has no graphical output, so it is being recreated with Vsystem libraries

Data

- Envelope functions created for each integration step
- Phase space distributions logged after each component

TRACK use for ATLAS operations

- In the past ~3 years ATLAS has been significantly re-configured
 - New LEBT line
 - RFQ installation
 - Re-configuration of first cryostat of low β resonators
 - Installation of new 72.75 MHz cryostat of QWR
- Many and sometimes all of our logged operating conditions were invalidated
- Recent He leak in old split-ring cryostat also resulted in a practical reconfiguration: 6 resonators and 3 solenoids became inoperable

TRACK use for ATLAS operations

- Predicted the electrostatic injection line configuration for the beam into the RFQ for commissioning
 - Pepper pot beam distribution
 - RFQ acceptance matched for minimum emittance and losses

TRACK use for ATLAS operations

- With good accuracy TRACK has been able to configure SC solenoids
 - Prior to phase scanning resonators
 - Transport of low energy beam through high energy sections (eg. 0.5 MeV/u ¹²C)
 - Equipment failure and loss of functionality

Future work

- Finalize the graphics to maximize understanding of beam evolution through the accelerator (component labels, user defined ranges of phase and envelope plots, etc)
- Measure scaling factors for all elements
- Refine the accelerator model by improving component accuracy
- Implement quad scan algorithm
- Log longitudinal characteristics when data is taken
- Develop a user interface to control TRACK operation

Summary

- TRACK is very accurate 3d macro-particle tracking software
- Accuracy relies on realistic component parameters and initial distributions
- TRACK has been successfully used to predict fields for previously unencountered configurations
- Visualization of beam evolution will be valuable training aid
- Refinement of the ATLAS accelerator model and development of quality user interface will be a powerful tool for the operations staff