JINR SUPERCONDUCTING SYNCHROTRON FOR HADRON THERAPY

E.M. Syresin, V.A. Mihailov, N.A. Morozov, A.V. Tuzikov Joint Institute for Nuclear Researches, Dubna e-mail: <u>syresin@nusun.jinr.ru</u>

The medical carbon synchrotron at maximal ion energy of 400 MeV/n was developed in JINR. The project goal is accumulation of the superconducting technology at construction of the carbon synchrotron with a circumference of 69.6 m on basis of the Nuclotron type magnets of JINR acting superconducting synchrotron. For injection of the carbon ions it is proposed to use IH linac of C^{4+} at energy 4 MeV/n. The superconducting gantry is developed for patient treatment. The gantry consists of two 67.5° and one 90° bending sections, each including two similar dipole magnets of a low aperture (about 120 mm). Such gantries are intended for multiple raster scanning with a wide carbon beam and the technique of layer wise irradiation with a spread out Bragg peak of several mm.

JINR activity in hadron therapy

Development of technology of proton therapy Construction of accelerator for proton therapy Development of medical carbon ion accelerators

Technology of proton therapy

Synchrocyclotron applied for proton treatment

3D conformal proton beam treatment realized in JINR.

Tumors treated in JINR in 2000-2014

Meningiomas	179
Chordomas, chordosarkomas	37
Gliomas	65
Lymphoma	1
Acoustic Neurinomas	20
Astrocytomas	48
Paragangliomas	6
Pituitary Adenomas	26
AVMs	78
Brain and other metastasis	77
Other head and neck tumors	286
Melanomas	19
Skin diseases	69
Carcinoma metastasis of the lung	8
Breast cancer	52
Brain cancer	11
Prostate Adenomas	1
Sarcomas	17
Other	41
Total	1041

Federal high-technology center of medical radiology, Dimitrovgrad, Uljanovsk reg.

Center involves: Center of proton therapy PET center

Proton therapy center consists of two medical cabins with gantry, cabin with fixed beam position, cabin for eye treatment and system of preliminary positioning Patlog

JINR-IBA developed and constructed joint cyclotron C235-V3 for center of proton therapy in Dimitrovgrad.

 Project of proton therapy center was developed in collaboration between Federal Medico-Biological Agency and Joint Institute for
Nuclear Research

Production of C235-V3 cyclotron by JINR-IBA

Cyclotron C235-V3 for proton therapy in JINR vault applied for beam tests

Parameter	C235	C235-V3
Optimization of	no	yes
magnetic field at		
central region		
Extracted beam	0.3	1
current, uA		
Vertical beam size	18mm	8 mm
at radius 20 cm		
was reduced		
Beam losses were	50%	25%
reduced at proton		
acceleration		
Beam losses at	50%	25%
extraction were		
reduced		
Reduction of		Radiation
radiation dose of		dose of
cyclotron elements		cyclotron
caused by of beam		elements
current losses		were reduced
		by several
		times

JINR Superconducting synchrotron-Nuclotron

The basis of medical accelerator for carbon ion therapy is the superconducting JINR synchrotron – Nuclotron

JINR superconducting synchrotron-Nuclotron.

Maximum particle energy, 6 GeV/n Perimeter, 251.5 m Max. magnetic field, 1.8 T Temperature, 4.5 K

The Nuclotron type fast cycling 3.6T/s dipole magnets with circulating two phase helium flow in superconducting cable

The superconducting magnets permit to reduce the accelerator electrical consumption, the size and weight of the accelerator. Especially the superconducting technology is important at design of the carbon gantry.

Medical complex for carbon ion therapy

1.Injection:

Electron string ion source

IH-linac

Injection channel consists of striping section

and the section of injection of carbon ions

in the synchrotron.

2. Carbon ion synchrotron

3. Beam delivery system

4. Superconducting carbon ion gantry

5. Two cabins with fixed beam

Injection in synchrotron

JINR electron string ion source applied for formation of C4+ ions

Base parameters of carbon linac corresponds to IH linac developed at NIRS

Parameters	RFQ	IH-DTL
Injection energy, MeV/u	0.01	0.61
Extraction energy, MeV/u	0.61	4
Operation frequency, MHz	200	200
Charge-mass ratio	1/3	1/3
Cavity length, m	2.5	3.4
Cavity outer diameter, m	0.42	0.44
Power, kW	120	360
Normalized 90% emittance,	0.85	1.1
π·mm·mrad		
Normalized 90%	1	1.2
longitudinal emittance,		
π·ns·keV/n		
Energy spread,%		±0.4
Maximal beam current, eµA	392	390

Beta-function in injection line

Carbon ion synchrotron

4/400 MeV/u
6.36/0.59 T·m
69,6 м
10 ¹⁰ p/cycle
0,03
2.37 μs
20
50 %
0.5 s
(0,5 -10) s
(140 - 400)
MeV/u
96%

The FODO structure is more preferable for injection and extraction schemes and corrections of the closed orbit distortions.

Synchrotron structure and magnetic elements

		Number of	4/12
Betatron tunes	3,25	superperiods/FODO periods	
Chromaticity DQ _x /(Dp/p)	-3,1	Number of dipole magnets/	32/24
DQ _z /(Dp/p)	-3,2	quadrupole lenses	
Parameter of orbit compaction	0,053	Magnetic field at	0.17/1.8 T
COD, mm	3	injection/maximal field	
Horizontal/Vertical acceptance,	180/70	Rate of magnetic field	3.26 T/s
π.mm.mrad		Maximal/injection gradients in	8,5/0.8 T/m
Emittance of injected beam	10	F lenses	
π.mm.mrad	10	Maximal/injection gradients in	-7,5/-0,7 T/m
Emittances of accelerated beam	20/1 5	D lenses	
Emittances of accelerated Deam	20/1,5	Curvature radius in dipole	3,53 m
$\mathbf{E}_{\mathbf{X}} = \mathbf{E}_{\mathbf{X}} \mathbf{E}_{\mathbf{Z}}, \mathbf{A} = \mathbf{E}_{\mathbf{X}} \mathbf{E}_{\mathbf{Z}}, \mathbf{A} = \mathbf{E}_{\mathbf{X}} \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}} \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}} \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}} \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}} \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}} \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}} \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}} \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}} \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}} \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}} \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}} \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}} \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}} \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}} \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}} \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}} \mathbf{E}_{\mathbf{X}}, \mathbf{E}_{\mathbf{X}} $	0.5/1.5	magnets	
Emittance of extracted beam $\varepsilon_{X}/\varepsilon_{Z}$,	0.3/1,5	Sagitta in dipole magnets	8,7 mm
π·mm·mrad			
Relative momentum spread	± 10 ⁻³		
Relative maximal momentum	$\pm 2 \times 10^{-3}$		
spread			

Injection in synchrotron

The multiturn injection is realized at fulfilling of the horizontal acceptance during 20 ion turns. The stored beam intensity is equal to 10¹⁰ ions per pulse.

Multiturn injection scheme, orbit and beam envelope: red – injected beam, violet – deflected beam, blue – circulated beam after first injection, green - circulated beam.

Septum magnet and four inflector plates are used in injection scheme, emittance of injected beam 10π ·mm·mrad, injection efficiency is 50%.

Extraction from synchrotron

The working point corresponds to betatron tunes Qx,z ≅3.25. Nonlinear 3 order resonance 3Qx=10 is used for slow beam extraction. The extraction time is varied from 0.5 s to 10 s. The intensity of extracted beam is equal to 1E9 pps.

Scheme of slow beam extraction.

Four bump magnets, electrostatic septum and septum magnet are used in extraction system

Parameter	Meaning	
Energy range, MeV/u	140	400
Magnetic rigidity, T×m	3.54	6.36
Emittance of circulated	36/2.7	20/1.5
beam $\varepsilon_x / \varepsilon_{y,} \pi \cdot mm \cdot mrad$		
Emittance of extracted	0.5/2.7	0.5/1.5
beam $\varepsilon_x / \varepsilon_y, \pi \cdot mm \cdot mrad$		
Extraction time, s	0.5-10	0.5-10
Slow extraction	95	96
efficiency, %		
Effective length of	0.25	0.25
quadrupole and		
sextupoles, m		
Maximal meanings for	15	40
derivatives of quadratic		
nonlinearities, T/m ²		
Maximal meanings of	0.9	0.15
gradients in LK1-LK4,		
T/m		
Effective length of ES, m	1	1
Electric field in ES,	3.5	6
MV/m		

Dipo	le ma	dnet (chara	cteri	stics

Number of magnets	32+1
Effective	0.7/0.9
length/physical of	
magnet, m	
Magnetic field changing	3.6
rate, T/s	
Nonhomogeneity of	±6×10 ⁻⁴
magnetic field for	
R=30mm	
Aperture of vacuum	128×64
chamber, mm	
Angle of turn, degree	11.25
Horizontal/vertical gap	150×66
between poles, mm	
Length of iron yoke, m	0.65
Width/height of yoke, m	0.31/0.228
Weight of magnet, kg	260

Current at maximum magnetic	12.1
field, kA	
Inductivity, mH	0.15
Energy losses per cycle at	10
B=1.5 T, J	
Total cycle duration, s	3-11
Dynamic thermal emission, W	<9.4
Diameter of cable, mm	8.2
Length of cable in the winding, m	15
Pressure differential between	<25
supplying and dispatching	
collectors, kPa	
Maximum temperature of helium	4.65
in the winding, K	

The Nuclotron type magnet winding is made of the superconducting tubular cable. The cable has internal cooling channel for the circulating two phase (boiling) helium flow.

Parameters of guadrupole lens		Inductivity, µH	24
		Energy losses per cycle at	2.5
Number of lenses in synchrotron	24+2	10T/m J	
Maximum/minimum gradient of	8.5/0.8	Total host amission W	36
magnetic field, T/m		Total near emission, w	5.0
Effective/physical length of long m	0.1/0.6	Pressure differential for feeding	<25
Effective/physical length of lens, in	0.4/0.0	and dispatching helium	
		collectors, kPa	
Magnetic field gradient change	17	Maximum temperature of	4.65
rate, (T/m)/s		holium in winding K	
Nonhomogeneity of magnetic field	±6×10 ⁻⁴	nenum m winding, K	
oradient			
Distance between evis and note m	0.048	226	
Distance between axis and pole, in	0.040	132	
Aperture of vacuum chamber, mm	130×64		
Width/height of voke, m	0.226/0.22		
8 ,	6		
	0		╷┥╸┥
Current of maximum field	8.2		í I
gradient, kA			
			ļ

The beam delivery system consists of following sections: the extraction section; the foil section provided equal beam emittances in both transverse planes; the accommodation section; the section for beam delivery in the cabin; the section of beam transportation between the medical cabins; the isocentric gantry;

the channel with fixed beam position cabin.

The beam delivery system should provide the fixed transverse beam sizes in the gantry isocenter. These sizes do not depend on the gantry rotation angle, the extracted ion energy, emittance of the extracted carbon ion beam.

Beam delivery system

Beta-functions of beam delivery system

The extracted carbon beam has non symmetric horizontal and vertical emittances. A special scattering foil is installed in the beam delivery system to provide both equal horizontal and vertical beam emittances.

The optic of the isocentric gantry is achromatic at beam transportation to the tumor target. The gantry optic provides equal horizontal and vertical beta functions and zero alpha-function on the tumor target. The parameters of gantry optic is adjusted to obtain the equal vertical and horizontal beta and alpha functions at the gantry entrance at variation of extracted beam emittances and sizes.

Superconducting gantry

The gantry consists of two 67.5° and one 90° bending sections, each including similar dipole magnets with bending angle 22.5°

The total gantry size corresponds to 10.5*6.5 M. Two duplets of quadruple lenses (Q1-Q2), (Q3-Q4) are placed between dipole magnets.

Layout of the JINR superconducting carbon ion gantry.

Two scan magnets are placed at the end of gantry magnetic system with scanning area ±10cm at isocenter. The horizontal scanning magnet (SM-HOR) is situated on a distance of 2.7m from isocenter, the magnet length corresponds to 0.3m, the maximal magnetic field is equal to 0.8T. The vertical scanning magnet (SM-VER) is placed on a distance of 2.1 m from isocenter, its maximal field is equal to 0.8 T and length is of 0.4 m.

Such gantry is intended for multiple raster scanning with a wide carbon beam and the technique of layer wise irradiation with a spread out Bragg peak of several mm. The efficiency of beam formation for such gantry is about 40%. The advantage of this gantry system is a simpler technology of manufacturing of superconducting dipole magnets with a small aperture and weight. The weight of all dipole magnets is about 10–15 t.

Superconducting dipole magnets

3D model of dipole magnet in **OPERA** simulations

 BH1
 P

 TopPolity
 period

 TopP

Magnet parameters	Value
Number of dipole magnets	8
Magnet type, current	Cosy
distribution	
Number of winding sectors	10
Total number of turns (per pole)	2841
Operating current, A	220
Magnetic field, T	3.2
Magnetic field rigidity, T m	6.63
Turning radius, m	2.07
Turning angle, °	22.5
Horizontal homogeneity of	±16
magnetic field, mm	
Homogeneity of magnetic field	$\pm 2.2 \times 10^{-4}$
Homogeneities of field integral	10-3
Internal and external radii of	61/72
winding, mm	
Internal and external radii of	78/178
yoke, mm	
Diameter of internal warm	40
vacuum chamber of beam, mm	
Radius of external vacuum	258/273
chamber of magnet, mm	

Homogeneity of magnetic field

Dependence of magnetic field on transverse coordinate.

Homogeneity of magnetic field 2×10⁻⁴ is performed in the magnet aperture of R~10 mm. The errors of magnetic field δB/B≅2×10⁻⁴ lead to 10% beam position displacement at dipole magnet exit. Uniformity of magnetic field integral in the dipole magnet.

Relative deviation of the magnetic field integral is equal to $\pm 1.4 \times 10^{-4}$ at transverse aperture of $\Delta X=\pm 3$ cm.

Thanks for your attention