

A pulsed gas-stripper for stripping of high-intensity, heavy-ion beams at 1.4 MeV/u at the GSI UNILAC

Paul Scharrer^{1,2,3}; SHE Chemistry Group

E. Jäger² W. Barth^{1,2} M. Bevcic² Ch. E. Düllmann^{1,2,3} L. Groening² K.P. Horn² J. Khuyagbaatar¹ J. Krier² A. Yakushev² ¹HIM Mainz, Germany ²GSI Darmstadt, Germany ³University Mainz, Germany

We are grateful for the support of the GSI ion-source and UNILAC staff.

Introduction

MHOLT7

ASSOCIATION

GSI UNILAC will be used as part of an injector system for \mathbf{FAR}

UNILAC upgrade program has started

²³⁸ U ²⁸⁺ -beam req.:	SIS18 injection
Electrical current [mA]	15.0
Particles/100 μs pulse	3.3 · 10 ¹¹
ΔW/W	± 0.002
ε _x (total, norm.) [μm]	0.8

UNILAC gas stripper

Current gas-jet stripper

Helmholtz Institute Mainz

- Super-sonic N₂ gas-jet (Laval nozzle)
- Up to 0.45 MPa back-pressure
- Gas-flow: 22 l/min

Increase of stripping efficiency (U^{28+}) not feasible using the N_2 -jet

Helmholtz Institute Mainz

Foil-stripping

Measurements 2010

U⁴⁺, 1.4 MeV/u, 100 μ s, 2 Hz Thickness: 20 to 50 μ g/cm² Irradiation: \approx 5 mA (U⁴⁺) <u>Lifetime: \leq 10 h</u>

W. Barth et al., Proceedings of LINAC2010, Tsukuba, Japan, 154-156

Other stripper-gases

Helmholtz Institute Mainz

MHOLT7

ASSOCIATION

Measurements 2013

- Measurements with H₂-jet
- Populated charge states below +18
- Limitation: gas load

- Measurements with CH₄-jet
- Comparison to N₂-jet shows lower average charge states
- Limitation: gas load

UNILAC beam operation

Helmholtz Institute Mainz

HELMHOLTZ

ASSOCIATION

Short pulse operation (e.g.):0.1 ms, 1 HzLong pulse operation (e.g):5 ms, 50 Hz

Pulsed gas cell

Helmholtz Institute Mainz

- Pulsed gas valve synchronized with the beam pulse timing
- Gas back-pressure up to 12 MPa
- Build-up added
 (ø = 22 mm, l = 44 mm)

BOSCH injection valve: Exem

Pulsed gas cell

Helmholtz Institute Mainz

Estimated gas flow: \leq 10 ml/pulse $\rightarrow \leq$ 0.6 l/min at 1 Hz repetition rate

Pulsed gas cell

MHOLTZ

ASSOCIATION

100 μ s U-beam \rightarrow Opening time: 500 μ s (for maximum gas density)

Helmholtz Institute Mainz

U⁴⁺-beam production

Vacuum ARc Ion Source (VARIS)*

- 67% in U⁴⁺
- 25 mA analysed U⁴⁺ current
- > 80% pulse to pulse stability

Optimization of the prestripper UNILAC for highcurrent U transport.

²³⁸U-beam measurements

Helmholtz Institute Mainz

SSOCIATION

Applied gases: H₂, He, Ne, N₂, O₂, Ar, CO₂

More narrow charge state distributions for light gas targets (H₂, He) \rightarrow increased stripping efficiency

²³⁸U-beam measurements

Helmholtz Institute Mainz

MHOLT7

ASSOCIATION

- Target thickness estimated from energy-loss measurements using SRIM*
- Achieved target thickness for H₂ insufficient to reach equilibrium
- Higher gas density needed

*J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, The Stopping and Range of Ions in Solids Vol. 1 (2008)

U²⁸⁺-intensity record

U²⁸⁺-intensity record

	N₂ gas- jet	H ₂ pulsed gas-cell
Maximum U ²⁸⁺ current [mA]	4.5	7.8
Energy-loss [keV/u]	20	12
ε _x (90%, total, norm.) [μm]	0.76	0.7
ε _γ (90%, total, norm.) [μm]	0.84	0.93
Horizontal beam brilliance [mA/µm]	5.32	10.03

FAIR requirement		
ε _x (total, norm.) [μm]	0.8	
U ²⁸⁺ current [mA]	15	
Horizontal beam brilliance [mA/µm]	18.75	

Helmholtz Institute Mainz

- Increased gas densities for the stripping process achieved using the new pulsed gas cell
- Practical use of light gas targets enabled and tested
- Stripping efficiencies into U^{28+} increased by 60% using the pulsed gas cell with $H_2 \dots$
- ... at similar beam quality
- U²⁸⁺-intensity record achieved at the GSI UNILAC

Measurements using uranium and titanium beams with a new modified setup in October 2015

Thank you!

