Design study of in-flight fragment separator for rare isotope science project in Korea

J. Kim, D. Kim, M. Kim, J. Song, C. Yun, W. Wan* and S. Kim

Institute for Basic Science, Korea *Lawrence Berkeley Laboratory

Chicago, June 18, 2012

Science Business Belt and Institute for Basic Science in Korea

Science Business Belt Layout of Institute for Basic Science (IBS)

Bird's-eye View of the Accelerator Facility Design in Korea

June 2012

Advanced heavy ion accelerator facility for nuclear science and applications

Three accelerators

- SC Linac1 200 MeV/u for ²³⁸U, 600 MeV for p: IF and ISOL driver
- Cyclotron 70 MeV for p: ISOL driver
- SC Linac2 ~18 MeV/u for A/q \leq 4 (?): ISOL post accelerator

Multi-user capability

- Independent operation of three accelerators
- Multiple operation modes: e.g. SC Linac1, Cyclotron + SC Linac2
- Utilization of empty rf buckets for different beams

81.25 MHz (QWR), 162.5 MHz (HWR), 325 MHz (Spoke)

Scope of Presentation in the RI Science Project

Layout of the fragment separator area

Design of In-flight Fragment Separator

W. Wan, J. Kim, Cyclotron Conf. 2010

Beam optics calculation of s-shape pre-separator

Aberrations up to 7th order

Calculated with TURTLE ϵ = 4 π mm· mrad $\Delta p/p = \pm 5 \%$

Optics of the 4-dipole C-shape pre-separator

 $\Delta p/p = 0.1\%$

A 4-dipole C-shape with more elements

Magnet parameters for the S-shape pre-separator

X-motion

Туре	Length (m)	Pole tip radius (m)	Field at pole tip (T)
Quad	0.65	0.15	2.25
Quad	0.8	0.15	-2.33
Quad	0.5	0.15	2.16
Dipole	30 degrees	0.1	1.20
Quad	0.65	0.2	1.96
Quad	0.8	0.2	-2.28
Quad	0.5	0.2	1.99
Sextupole	0.3	0.2	1.26
Sextupole	0.3	0.2	-1.26
Quad	0.5	0.2	1.99
Quad	0.8	0.2	-2.28
Quad	0.65	0.2	1.96
Dipole	30 degrees	0.1	1.20
Quad	0.5	0.15	2.16
Quad	0.8	0.15	-2.33
Quad	0.65	0.15	2.25

Calculated using COSY Infinity (W. Wan) →Further calculation underway to increase momentum dispersion at beam dump

- → Multipole coils at the locations of quadrupole
- angular acceptances: 80 mrad, 100 mrad
- momentum acceptance : 18 % for r=20 cm, 9 % for r= 15 cm
- length: 24.8 m

Without correction

With sextupole+octupole correction

Plans for the next fiscal year (July '12 – April '13)

- Finalizing the IF separator configuration with more optics calculations (a design review planned in the end of the year)
- Start prototyping of superferric and high-Tc SC magnet.
 → collaboration with BNL
- Design and test on a single layer and multi-layer graphite targets
- Radiation transport and shielding calculations especially in the pre-separator area (MCNPX, PHITS,...)
- Study on the remote handling system.
- RF deflector design study for beam purification.

Prototyping of a sc-quadrupole magnet

Design parameters

- Pole tip radius: 170 mm
- Length of iron: 740 mm
- Outer radius of yoke: 480 mm
- Field gradient: 14 T/m

Multipole components at r=12 cm

 $\int B_{hex}/B_{quad}$: ~1/1000

Test cryostat for prototype quadrupoles

- Two small cryo-coolers?
- Multipole coils placed on the cold bore tube
- High Tc SC-magnet test.

Schematic view of the cryostat with prototype quadrupole magnets inside

Estimation of heat loads on the cryostat

Part	Heat load (He, 4K)	Heat load (N2, 80K)
Shield radiation	0.30 W	9.4 W
Support link	0.64 W	16.0 W
He port (vent)	0.77 W	7.8 W
Current lead	0.75 W	45.0 W
Total	2.46 W	78.2 W

Preliminary heat deposit calculation using PHITS

Elements	Heat _{max} [J/cm ³]	Dose rate [Gy/yr]*
Coll. & Q1	0.37	2.06*10 ⁸
Q2	0.05	2.06*10 ⁶
Q3	0.02	2.06*10 ⁶
Beam dump	277.15	5.57*10 ¹²

dose rate calculated using 400MeV/u ²³⁸U beam at 400 kW and ⁹Be target

Calculation of radioactivity decay for ¹²C target

Used codes: PHITS → DCHAIN-SP

- Assuming 30 days of irradiation with U beam at 400 kW.
- Decay during the irradiation period of 30 days is not properly considered.

Radiation shielding calculation in the beam dump area

Simplified geometry for shielding calculation near beam dump

Comparison of neutron energy spectrum in forward direction

Design of an rf deflector to purify rare isotope beams

Current Status

- Beam optics design will be performed with more manpower.
- → Possibility of a branched beam line in the pre-separator area is to be studied.
- Pre-separator design including the target and beam dump is the main focus.
- Radiation shielding and radiation transport calculations are carried out using different codes.
- **Preparations for prototyping** of superferric quadrupole magnet and high-Tc coil magnet are underway.

Schedule and Budget

Budget

~420 M\$ (accelerator and experimental systems excluding staff salary and civil construction)