A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Leitner, M.

Paper Title Page
TU-05 "DIANA" - a New, Deep-Underground Accelerator Facility for Astrophysics Experiments 44
 
  • M. Leitner, D. Leitner, A. Lemut, P. Vetter
    LBNL, Berkeley
  • M. Wiescher
    Notre Dame University, Notre Dame
 
 

Funding: This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.


The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a crossdisciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV to 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges.

 

slides icon

Slides

 
C-04 NDCX-II, a New Induction Linear Accelerator for Warm Dense Matter Research 256
 
  • M. Leitner, F. Bieniosek, J.W. Kwan, G. Logan, W.L. Waldron
    LBNL, Berkeley
  • E.P. Gilson, R. Davidson
    PPPL, Princeton
  • J.J. Barnard, A. Friedman, B. Sharp
    LLNL, Livermore
 
 

Funding: This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.


The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration between Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Princeton Plasma Physics Laboratory (PPPL), is currently constructing a new induction linear accelerator, called Neutralized Drift Compression eXperiment NDCX-II. The accelerator design makes effective use of existing components from LLNL’s decommissioned Advanced Test Accelerator (ATA), especially induction cells and Blumlein voltage sources that have been transferred to LBNL. We have developed an aggressive acceleration “schedule” that compresses the emitted ion pulse from 500 ns to 1 ns in just 15 meters. In the nominal design concept, 30 nC of Li+ are accelerated to 3.5 MeV and allowed to drift-compress to a peak current of about 30 A. That beam will be utilized for warm dense matter experiments investigating the interaction of ion beams with matter at high temperature and pressure. Construction of the accelerator will be complete within a period of approximately two and a half years and will provide a worldwide unique opportunity for ion-driven warm dense matter experiments as well as research related to novel beam manipulations for heavy ion fusion drivers.