A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Calabretta, L.

Paper Title Page
MO-06 Operational Experience with the EXCYT Facility 5
 
  • D. Rifuggiato, L. Calabretta, L. Celona, F. Chines, L. Cosentino, G. Cuttone, P. Finocchiaro, A. Pappalardo, M. Re, A. Rovelli
    INFN/LNS, Catania
 
 

The EXCYT project has successfully come to conclusion at the end of 2006. As a consequence a new facility for production and acceleration of radioactive ion beams is now available at Laboratori Nazionali del Sud, Catania. This facility is based on the ISOL method: in particular the primary beam is delivered by a Superconducting Cyclotron, while the secondary beam is post-accelerated by a Tandem. A low energy radioactive beam is also available at the exit of the pre-injector. The main features of the commissioning of the facility will be described. Details will be given on the characteristics of the diagnostic devices. Future development activities are related both to the operative features of the new facility and to the improvements and upgrading that are planned to be introduced in the near future. All of these subjects will be extensively discussed.

 

slides icon

Slides

 
MO-07 The SPES project: an ISOL facility for exotic beams 9
 
  • G. Prete, A. Andrighetto, L. Biasetto, F. Gramegna, A. Lombardi, M. Manzolaro
    INFN/LNL, Legnaro
  • L. Calabretta
    INFN/LNS, Catania
 
 

SPES (Selective Production of Exotic Species) is an INFN project to develop a Radioactive Ion Beam (RIB) facility as an intermediate step toward EURISOL. The SPES project is part of the INFN Road Map for the Nuclear Physics development in Italy and is supported by LNL and LNS the INFN National Laboratories of Nuclear Physics in Legnaro and Catania. The Laboratori Nazionali di Legnaro (LNL) was chosen as the facility site due to the presence of the PIAVE-ALPI accelerator complex, which will be used as re-accelerator for the RIBs. The SPES project is based on the ISOL method with an UCx Direct Target and makes use of a proton driver of at least 40 MeV energy and 200 microA current. Neutron-rich radioactive beams will be produced by Uranium fission at an expected fission rate in the target in the order of 1013 fissions per second. The key feature of SPES is to provide high intensity and highquality beams of neutron rich nuclei to perform forefront research in nuclear structure, reaction dynamics and interdisciplinary fields like medical, biological and material sciences. The exotic isotopes will be re-accelerated by the ALPI superconducting linac at energies up to 10AMeV for masses in the region of A=130 amu with an expected rate on target of 109 pps.

 

slides icon

Slides

 
TU-12 Design Study of Medical Cyclotron SCENT300 79
 
  • M. Maggiore, L. Calabretta, M. Camarda, G. Gallo, S. Passarello, L.A.C. Piazza
    INFN/LNS, Catania
  • D. Campo, D. Garufi, R. La Rosa
    Catania University/Dept. Phys. and Eng., Catania
 
 

The study of the Superconducting Cyclotron named SCENT300 was carried out by the accelerator R&D team of Laboratori Nazionali del Sud (LNS-INFN) of Catania in collaboration with the University of Catania and supported by IBA (Belgium). Combining the compactness of a superconducting cyclotron, with the advantage of this kind of machine as its continuous beam and its very good current control, the accelerator R&D group of LNS, by its ten-year of experience with this kind of machine, has developed a concept for a multiparticle therapy cyclotron which is described in the following report.

 

slides icon

Slides