

Grid Noise and Entropy Growth in PIC Codes

HB201410-14 November, 2014

Ingo HofmannGSI/TUD Darmstadt

- •Theory overview
- Grid and particle collisions in 3d and 2d •(bunches + FODO)
- Noise and rms entropy in equilibrium
- Application to resonant/unstable processes•
- •**Conclusions**

Acknowledgments: O. Boine-Frankenheim (co-worker)J. Struckmeier (discussions)

Motivation

Why do we study collisions and noise in high intensity simulation?

- \triangleright "usual" approach: let us increase N, grid rsolution, time steps \rightarrow convergence
 \triangleright in linacs so far we have lived well with this questions arise for error studies
- in linacs so far we have lived well with this questions arise for error studies
(1000's of linese) with low" N (-105) (1000's of linacs) with "low" N $(\sim 10^5)$
- \triangleright in circular machines 100.000's of turns cross-check resonance trapping with space charge (noise-free simulations by G. Franchetti)
- > CERN space charge workshop April 2013 triggered off new interest ..

3 papers give basis for "equilibrium" beams:

- *1. Theory: J. Struckmeier, Part. Acc. (1994) & Phys. Rev. E (1996) & PRSTAB (2000)*
- *2. 3d-simulation: I. Hofmann and O. Boine-Frankenheim, to be published in PRSTAB (2014)*
- *3. 2d-simulation: O. Boine-Frankenheim et al. NIM (2014)*

Current study extends equilibrium discussion to (typical) dynamical phenomena

(mismatch, resonances ...)

- are above noise concepts useful?

Entropy

Liouville - infinite resolution – coarse graining

- • Liouville: exact areas in 2d, 4d, 6d phase spaceinvariant for Hamiltonian flow – no growth of "infinite resolution" entropy
- • How break this?
	- for "finite resolution" self-consistent space charge • potential on a grid (as in PIC) exactly Hamiltonianflow broken → growth of entropy
for exactly resolved motion of dir
	- • for exactly resolved motion of directly interactingparticles (collisions) in 6d:
		- collisions break Hamiltonian flow in 6d \rightarrow growth of entropy
		- "infinite resolution" entropy in 6Nd phase space still invariant → Gibbs introduced coarse graining of
phase space to obtain entropy growth phase space to obtain entropy growth

$$
\cdot \vdots \cdot \hspace{1.5cm} \longrightarrow \hspace{1.5cm} \square
$$

$$
S_{CG}(\rho(X)) = -k \int \overline{\rho}(X) [\ln \overline{\rho}(X)] d\Gamma
$$

 $\overline{\rho}$ is averaged over a cell

Poisson solver grid & noise

Grid induced noise:

- not included in original "collisional" approach of Struckmeier •
- • assume several sources:
	- •**non-Liouvillean effect by fluctuating charges on grid**
	- •focussing modulation "fast"
	- coherent flow vs. incoherent "temperature" •

5

Second order moments of Vlasov – FP equation- **rms based (emittance, "temperature", ...)**

$$
\frac{d}{dt}\left\langle x_i^2 \right\rangle = \int x_i^2 \frac{\partial f}{\partial t} d\tau
$$
\n
$$
\varepsilon_i^2(s) = \left\langle x_i^2 \right\rangle \left\langle x_i^2 \right\rangle - \left\langle x_i x_i \right\rangle^2
$$
\n
$$
\varepsilon_i^2(s) = \left\langle x_i^2 \right\rangle \left\langle x_i^2 \right\rangle - \left\langle x_i x_i \right\rangle^2
$$
\n
$$
\varepsilon_i^2(s) = \frac{2q}{mc^2 \beta^2 \gamma^3} \left\langle x_i^2 \right\rangle
$$
\n
$$
\varepsilon_i^2(s) = \frac{2q}{mc^2 \beta^2 \gamma^3} \left\langle x_i^2 \right\rangle
$$
\n
$$
\varepsilon_i^2(s) = \frac{2q}{mc^2 \beta^2 \gamma^3} \left\langle x_i^2 \right\rangle
$$
\n
$$
\varepsilon_i^2(s) = \left\langle \frac{\beta_{f;i}}{c\beta\gamma} \frac{\varepsilon_i^2(s)}{\gamma^2} - \frac{\langle D_{ii} \rangle}{c^2 \beta^3 \gamma^3} \right\rangle.
$$

$$
\frac{kT_i}{mc^2\beta^2\gamma} = \frac{\varepsilon_i^2(s)}{\langle x_i^2 \rangle}; \qquad T_{eq} = \frac{1}{3} \sum_{i=1}^3 T_i
$$
\n
$$
D \equiv \langle D_{ii} \rangle; \qquad \beta_f \equiv \beta_{f;i}; \quad k_f \equiv \beta_f/c\beta\gamma \quad D = \beta_f \, \gamma kT/m \text{ (Einstein relation)}
$$
\n
$$
\frac{d}{ds} \ln \varepsilon_x^2 = k_f \left[\frac{T_y(s)}{T_x(s)} - 1 \right] \qquad \frac{d}{ds} \ln \varepsilon_y^2 = k_f \left[\frac{T_x(s)}{T_y(s)} - 1 \right] \qquad \text{(one decreasing one increasing)}
$$
\n
$$
\frac{d}{ds} \ln \varepsilon_x^2 \varepsilon_y^2 = k_f \left[\frac{(T_x - T_y)^2}{T_x T_y} \right] \ge 0 \quad \text{or in 6d} \quad \frac{d}{ds} \ln \varepsilon_x^2 \varepsilon_y^2 \varepsilon_z^2 = \frac{2}{3} k_f \left[\frac{(T_x - T_y)^2}{T_x T_y} + \frac{(T_x - T_z)^2}{T_x T_z} + \frac{(T_z - T_y)^2}{T_z T_y} \right] \ge 0
$$

n se

Resulting in an rms entropy law

$$
S_{6d,rms} \equiv \ln \varepsilon_x \varepsilon_y \varepsilon_z \qquad \varepsilon_{6d,rms} \equiv \varepsilon_x \varepsilon_y \varepsilon_z
$$

$$
\frac{d}{ds} S_{6d,rms} = \frac{1}{3} k_f \left[\frac{(T_x - T_y)^2}{T_x T_y} + \frac{(T_x - T_z)^2}{T_x T_z} + \frac{(T_y - T_z)^2}{T_y T_z} \right] \ge 0
$$

= 0, if $T_x = T_y = T_z$ (equipartitioned)

never decreasing – under the assumptions of its validity!

heuristic justification:

- emittances [~]"probabilities" in phase space \bullet
- •• → product of probabilities for "independent" events
• entropies should be additive for ~ decoupled proba
- •entropies should be additive for \sim decoupled probabilities (\rightarrow ln)
 \rightarrow coupling between degrees of freedom only on microscopic leg
- \rightarrow \rightarrow coupling between degrees of freedom only on microscopic level
 \rightarrow should be non-decreasing •
- \bullet should be non-decreasing
- **rms approximation – no higher order correlations resolved !!!** •

TRACEWIN simulations: matched equilibrium

"Confirms" ε_{6d} – as rms entropy concept

HB2014

Anisotropy and grid effect \rightarrow **fits** to theory with I_{GN} and K_f ^{*} fitted to data

Comparison of 3d with 2d results

A. B. Langdon, Effect of the spatial grid in simulation plasmas, J. Comput. Phys. (1970) \rightarrow Artificial heating if grid is too coarse: $\Delta x \gtrsim \lambda_D$ (Debye length)

In 2d enhanced collisions if grid too fine \rightarrow larger N

From matched equilibrium beams - **mismatched, resonances,**

- 1. Can we apply our models of noise vs. N and/or n_c to dynamical situations with resonant effects? Use foroptimization?
- 2. Are there transient/resonant/unstable phenomena, whichrequire a more refined measure for noise/entropy than $\epsilon_{\text{6d,rms}}$?
- 3. Do we need more theory efforts, or are phemenological studies the only way?

Non-stationary (non-equilibrium) beams - fast emittance exchange on 2kz-2kxy=0 resonance (space charge octupole) exchange practically unaffected by noise**-** $\mathsf{N}{=}10^5$ **k**_{0x,y,z}=60/60/60^o and $\mathbf{\mathcal{E}}_{\mathbf{z}}/\mathbf{\mathcal{E}}_{\mathbf{x}\mathbf{y}}$ =2 • **^kx,y,z=26o/26o/35o** fast emittance exchange: ~ few plasma periods• 0.13 0.0014 Pedia

Elementary

Elementary

Contractor

Contractor

Contractor

Contractor

Elementary

Contractor

Elementary

Contractor

Elementary

Contractor

Elementary

Contractor

Elementary

Elementary

Elementary

Elementary
 \bullet Ft. ϵ _z $.8$ \bar{x} 0.0012 0.001 $.6 \frac{\varepsilon_{xy}}{\frac{6}{30.0008}}$ ϵ_{6d} $.4$ $rac{6}{5}$ 0.08 $.2 \cdot$ ؋ $\frac{1}{2}$ 0.07 $E_{0.0004}$ 200 400 600 800 1,000 0.06 0.5 1.5 $\overline{1}$ 200 400 800 1,000 Position (m) $\overline{2}$ 600 kz / kxy Position (m) $n_c=6$ $\mathsf{N}{=}\mathsf{10}^{\mathsf{3}}$ TraceWin - CEA/DSM/frfu/SACM TraceWin - CEA/DSM/fr6+/SACM 0.13 noise driven exchange $\begin{array}{l} \mathbb{R} \\ \mathbb{R} \\ \mathbb{E} \\ \mathbb{E} \\ \mathbb{E} \\ 0.0012 \end{array}$ \bullet E, Ez $\frac{1}{2}$ 0.12 $\frac{1}{10}$ 0.8 $\bm{\mathcal{E}}_{\mathsf{Z}}$ $\frac{2}{5}$ 0.11 $rac{20.6}{x}$ 익 emittances 0.1 0.001 ϵ_{6d} $\bar{\hat{\xi}}_{0.4}$ -- 홀 0.09 $\frac{8}{5}$ 0.0008 =
= 0.08
= $\bm{\mathop{\varepsilon}}_{\mathsf{x}\mathsf{y}}$ 6D 0.2 $\frac{1}{2}$ 0.07 **Ø0.0006** \mathbf{Q} 0.06 $\ddot{\epsilon}_{0.0004}$ 200 1,000 400 600 800 0.5 1.5 200 800 1,000 Position (m) 400 600 kz / kxy Position (m)

 $\overline{5}$

Mismatched beams - **halo formation**

chose large MM factor in x,y and z $\&$ N=10⁵

Mismatch → halo ~ 50 turns

 ${\sf fast}$ conversion into halo \to noise has no effect on this!

Crossing of space charge driven resonances ^k0xy=90⁰-**600 / 500 cells**

THE REAL

Crossing of 90⁰(4th order) space charge drivenresonance ^k0x=105⁰-**880 / 1000 cells (k0y=105⁰fixed)**

128 k particles, n_e =4-6: find 4 "identical" islands pushed outwards

cont'd crossing ^k0x=105⁰ - **⁸⁸⁰/1000 cells**

128 k particles, n_c =7-12: find breaking of four-fold symmetry > 500 cells envelope instability (h=2) on top of h=4?

Summary: crossing k_{0x} =105⁰ \rightarrow 88⁰/1000 cells

question: why more growth for finer grid, if additional mode isonly 2nd order?

I G-L ²⁰

Summary

- 3 d noise by grid well represented by rms entropy in equilibrium beam
- Grid heating $(n_c<5)$ or collisional heating $(n_c>10)$ for small/large number of smile pollone λ entiming number λ number of grid cells $n_c \rightarrow$ optimum n_c for given N
Aniactropy offect in anoally agreement with thesem
- \checkmark Anisotropy effect in "good" agreement with theory
- **✓ Dynamical problems:**
	- \checkmark our noise modelling seems irrelevant for fast processes "no"effect
of naise of noise
	- \checkmark slow resonance crossing: retrieve noise dependence on grid, but
different for island transing. \checkmark much increased halo for lerger n. 3 different for island trapping \rightarrow much increased halo for larger n_c ?
- needs more work especially towards resonance (collective) effects