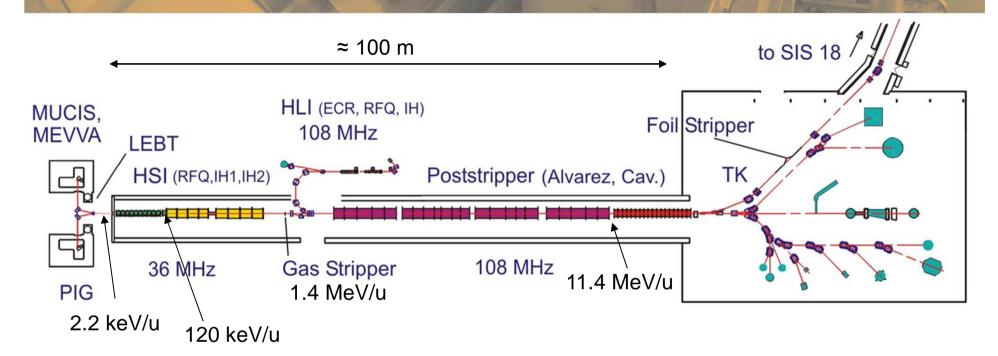

Upgrade of the UNILAC for FAIR

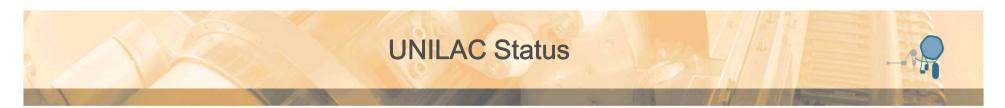
L. Groening, A. Adonin, X. Du, R. Hollinger, S. Mickat, A. Orzhekhovskaya, B. Schlitt, G. Schreiber, H. Vormann, C. Xiao GSI/Germany H. Hähnel, R. Tiede, U. Ratzinger Goethe University of Frankfurt/Germany

- Overview of FAIR and Injector Requirements
- UNILAC and its Status
- Upgrade Measures:
 - Source & LEBT
 - RFQ
 - MEBT & IH DTL
 - Stripper Section
 - Alvarez DTL



FAIR Primary Beam Chain

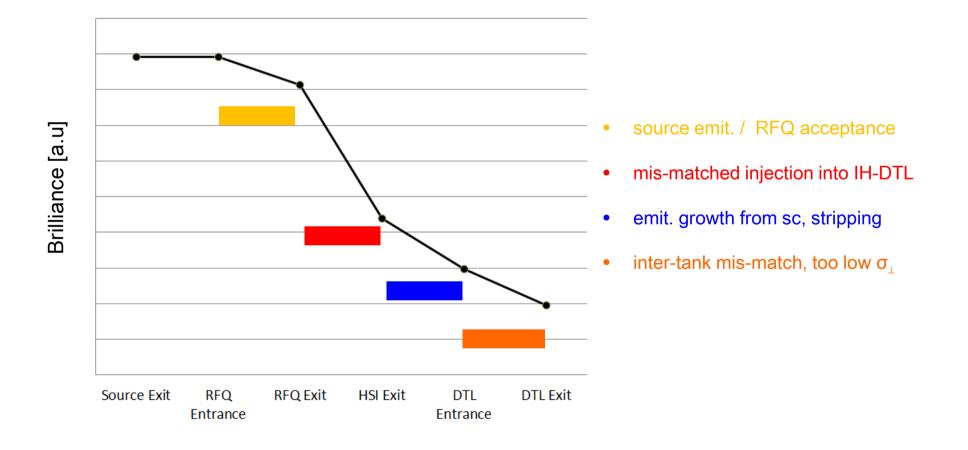
HB2014 54" ICFA Advanced Beam Dynamic Workey or Hellerandy, See Type Hellerandy, New Proversion Beam Dynamic Workey or Hellerandy, New Proversion Beam Dynamic


UNIversal Linear ACcelerator UNILAC

ion A/q	≤ 8.5, i.e. ²³⁸ U ²⁸⁺	
beam current (pulse) * q/A	1.76 (0.5% duty cycle)	emA
input beam energy	1.4	MeV/u
output beam energy	11.4	MeV/u
normalized total output emittance, horizontal/vertical	0.8 / 2.5	mm mrad
beam pulse duration	≤ 5000	μs
beam repetition rate	≤ 50	Hz
operating frequency	108.408	MHz
length	≈ 100	m

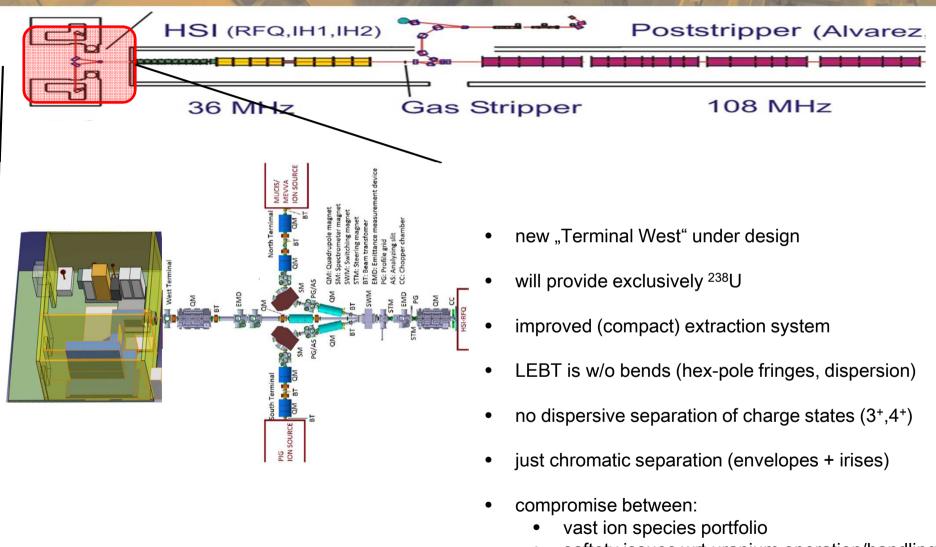
GSI

Figures of merit for an injector :

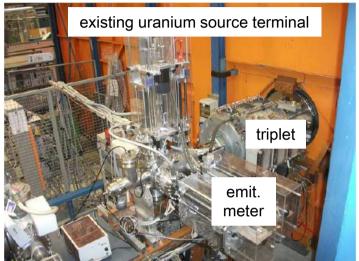

- small emittance
- high current
 - → <u>high ratio</u> current / emittance = brilliance
- define the normalized (energy), scaled (q/A) brilliance

$$\tilde{B}_n := \frac{q}{A_{mass}} \frac{I}{\epsilon_n}$$

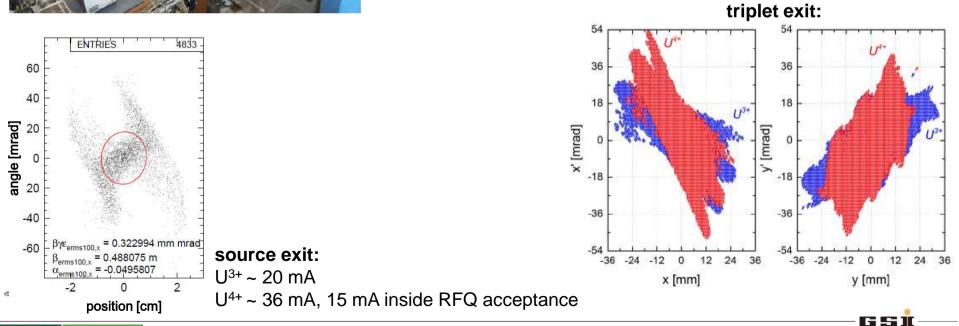
- requirement for FAIR (²³⁸U²⁸⁺, 11.4 MeV/u): 1.9 mA / mm mrad
- achieved with ⁴⁰Ar¹⁰⁺, 3.6 MeV/u:
 1.2 mA / mm mrad
- achieved with ²³⁸U²⁸⁺, 11.4 MeV/u: 0.5 mA / mm mrad
 - UNILAC may deal with the space charge
 - limitations from high e.m. fields demanded by uranium



development of uranium brilliance along present machine from f2e simulations (assuming optimized settings)


New and Dedicated Uranium Source & LEBT Branch

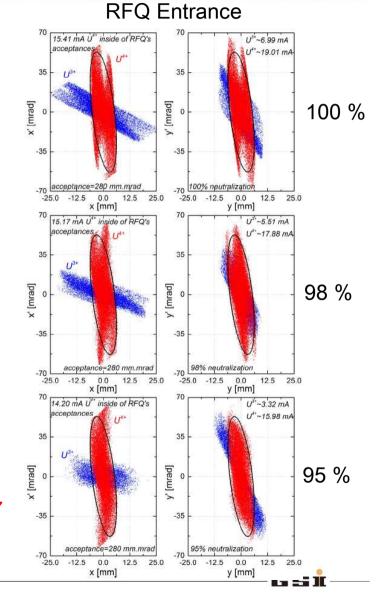
saftety issues wrt uranium operation/handling


GSİ

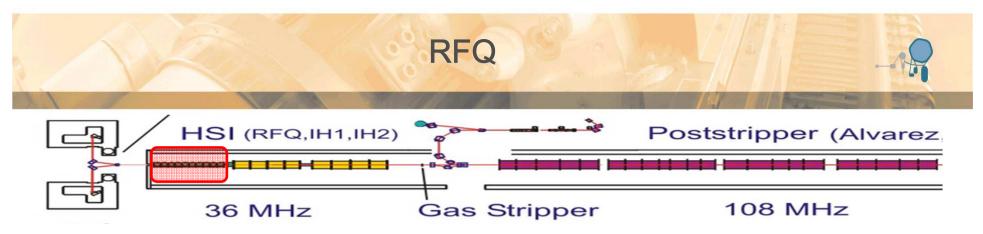
Layout of LEBT Based on Measured Source Distributions

B2014 54" ICFA

- triplet between source & emit. meter to distinguish charge states
- focusing inside source & extraction is electrostatic: → all charge states have same distribution at exit
- triplet focusing is magnetic
 - \rightarrow charge states at emit. meter have different distributions
- charge state spectrum and source exit distribution can be reconstructed → see <u>IPAC2014, THPME007</u> (S. Yaramyshev)


Upgrade of the UNILAC for FAIR, *L. Groening et al.*

Simulations along new LEBT (assuming different sc compensations)


-v. 100% neutralization -y, 98% neutralization 6 [cm] 3 QT QQ2 QQ1 0 envelopes_{90%} -3 -6 primary beam U⁴⁺ -9 -v. 100% neutralization - -y, 98% neutralization 6 +x ----- -y, 95% neutralization [cm] 3 QQ1 002 envelopes_{90% f} 0 OT -3 -6 second component U³ -9 4 5 LEBT [m] 8 9 0 1 2 3 4 6 7

- increase of current/emittance by factor 2 wrt value optained in 2007
- 30% still missing (\rightarrow new extraction system to be tested)

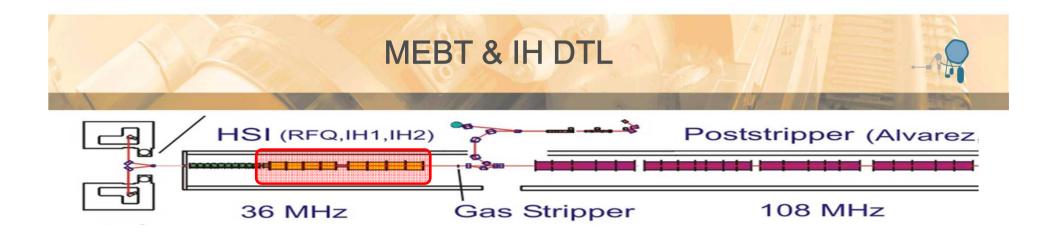
Envelopes

HB2014 54" ICFA Advanced Beam Dynamics Upgrade of the UNILAC for FAIR, L. Groening et al.

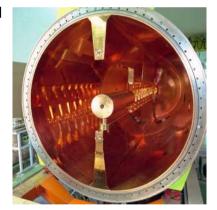
 $31 \text{ MV/m} = 2.8 \text{ E}_{\kappa}$

acceleration from 2.2 to 120 keV/u

418 cells, i.e. 9.27 m in length

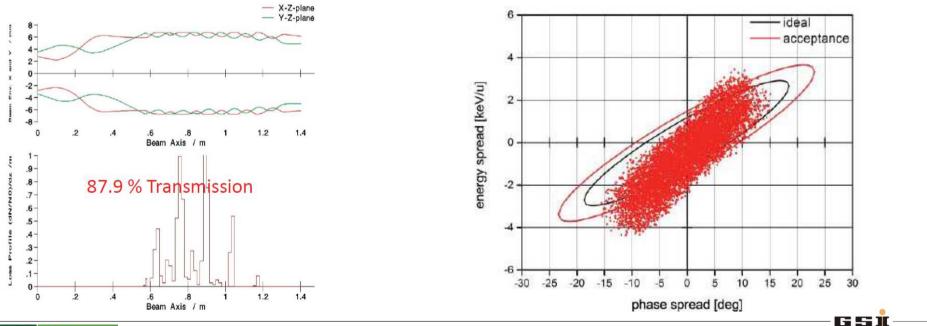

problems with existing RFQ (upgraded in 2009):

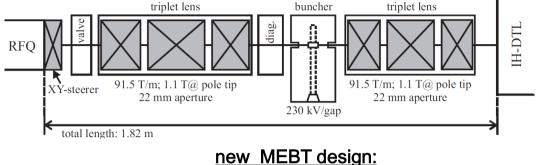
- output distribution too divergent to be captured by subsequent doublet \rightarrow losses
- rods suffered from sparking (especially during mixed duty-cycle operation)
- just 90% of required vane voltage for $^{238}U^{4+}$ operation \rightarrow insufficient bunching


plans for re-design :

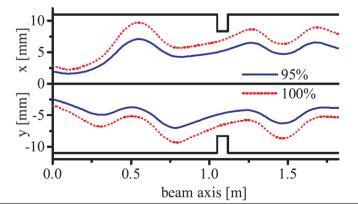
- reduce surface field at expense of acceptance
- keep overall length
- match output to subsequent MEBT & IH DTL requirements
- operation just at low duty cycles, no more mixed operation
- design works start in 2015

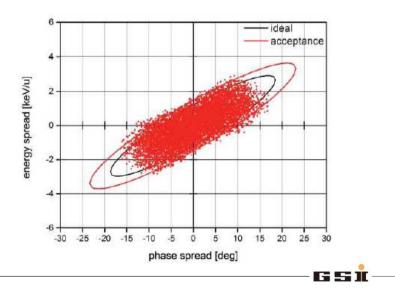
- super lens: IH-type 11-cell RFQ, no acceleration, just matching to IH DTL
- IH-cavity I
 - KONUS-acceleration to 0.74 MeV/u
 - 53 gaps
 - 3 internal triplets
 - 1.6 MW rf-power
- IH-cavity II
 - KONUS-acceleration to 1.4 MeV/u
 - 46 gaps
 - 3 internal triplets
 - 1.6 MW rf-power



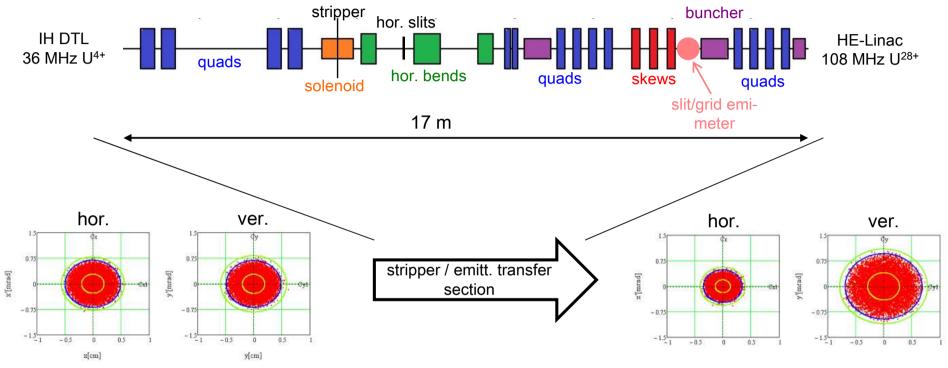

problems with existing MEBT:

- after RFQ upgrade: quad doublet in front of super lens cannot re-focus the beam sufficiently (too divergent)
- beam loss inside super lens → triggers sparking → enforces voltage reduction → poor optics
- super lens has just two knobs, i.e. long. & transv. matching capabilities are poor
- MEBT output is long. mis-matched wrt subsequent IH DTL entrance requirements
- overall MEBT & IH DTL performance (simulations):
 - transmission 86 %
 - emittance growths: 57/93/324 % hor/ver/long





- is 1.4 m longer → requires moving two IH cavities of 10 m length each
- 6 knobs: 4 gradients (2 symmetric triplets), rf-amplitude & -phase
- long. & transv. well matched to subsequent IH DTL
- overall new MEBT & IH DTL performance (simulations):
 - transmission 100 %
 - emittance growths: 54/61/ 65 % hor/ver/long 57/93/324 % (existing)



Upgrade of the UNILAC for FAIR, *L. Groening et al.*

- testing of new stripping gases & pressures
- concept of adjustable hor → ver emittance transfer may be applied in stripper section
- design work will start soon

HB2014 54"ICFA Advanced E

• emittance transfer: talk on concept and its experimental demonstration: WEO3LR, Wed. 3⁰⁵ pm

GSİ

Todays Alvarez DTL

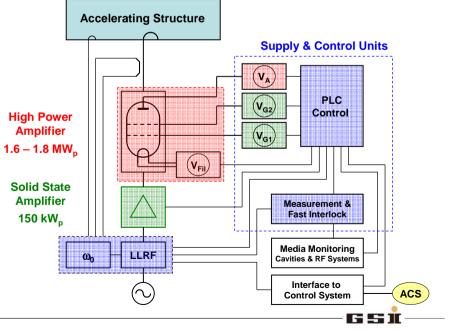
- first three Alvarez tanks in operation since 40 years
- warranty expired 15 years ago
- drift tubes are obviously damaged
- copper plating has bubbles & bumps
- resources for maintanance increase rapidly

- tanks suffer especially from mixed operation mode, i.e. within one second (example):
 - 1 short rf-pulse (1 ms) with highest rf-power
 - 25 long rf-pulses (6 ms) with intermediate power_1
 - 24 long rf-pulses (6 ms) with intermediate power_2
- quadrupole cooling channel leakages

32014 54" ICFA

• Alvarez DTL needs to be replaced prior to routine operation of FAIR

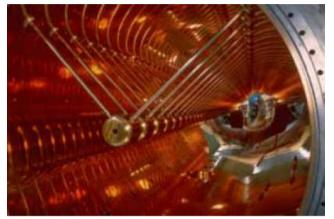
New DTL Parameters, Rf-Power


design parameters remain, except duty cycle

Ion A/q	\leq 8.5, i.e. ²³⁸ U ²⁸⁺	
Beam Current (Pulse)	15	emA
Input Beam Energy	1.4	MeV/u
Output Beam Energy	11.4	MeV/u
Normalized, total output Emittance, horizontal/vertical	0.8 / 2.5	mm mrad
Beam Pulse Length	≤ 100	μs
Beam Repetition Rate	≤ 2.7	Hz
Operating Frequency	108.408	MHz

no mixed-mode operation in future !

new rf-equpiment for short pulses:


- existing power sources are 40 years old replace all-in-one high power amplifiers by modular system
- replace relais-based control system by PLC
- replace two-staged tube pre-amplifiers by one single solid state device
- cost per power source ≈ 2 M€

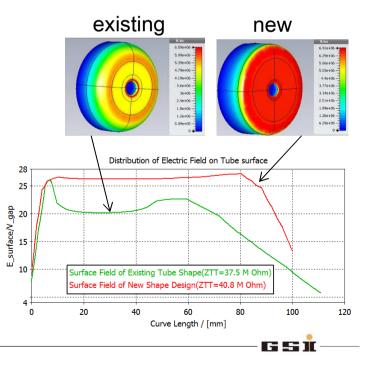
DTL: Alvarez vs IH-Mode

Alvarez

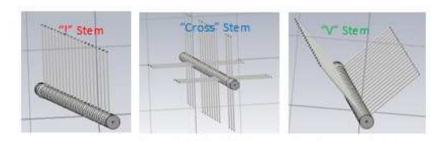
- state-of-the-art at high current proton/ion linacs
- in operation at GSI
- mechanical length
- · low efficiency wrt operating cost / acceleration
- · needs more quads and power converters
- higher beam quality
- analytical beam dynamics model available

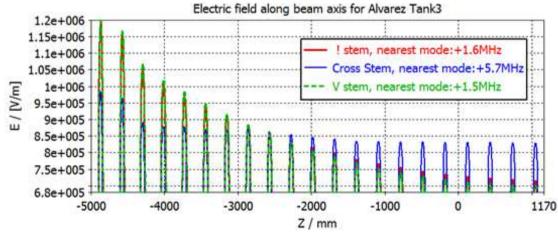
IH (Interdigital H-Mode)

- in operation at GSI
- mechanical length
- high efficiency wrt operating cost / acceleration
- needs less quads and power converters
- existing tunnel allows for 50 MeV/u DTL (bypassing SIS18 and direct injection into SIS100)
- lower beam quality
- no analytical beam dynamics model available



- for time being GSI foresees replacing existing Alvarez DTL by another Alvarez DTL
- IH/CH DTL + KONUS is more rf-efficient, but GSI shall give priority to beam quality, i.e.
 - proper definition of periodic lattice
 - proper definition of periodic solution
 - procedure for envelope matching with space charge is available & tested
- if H-mode cavities do deliver same or better beam quality \rightarrow design review indicated
- DTL design works are at beginning
- improved drift tube end plate shape wrt to existing design
- optimizition of ratio shunt_impedance / surface_field
- shape is "freehand-shape" defined by 200 fix-points
- manufacturers:


2014 54" ICFA


- "freehand-shape is no considerable cost driver"
- feasible with same tolerances as const-R-shapes
- cavity model will be ordered soon

- end plate shape of drift tube is constant for all tubes of same tank
- five tanks total, 1.8 MW of rf-power available per tank
- each drift tube is kept by two stems (as today):
 - facilitates provision of quad current, water cooling of tubes & quads
 - well-considered orientation of stems mitigates parasitic TM rf-modes

- constant tank radius, cell tuning by changing gap/cell ratio with beta
- first "favoured" version of beta-profile of first tank available:
 - acceleration from 1.4 to 3.6 MeV/u
 - 66 cells
 - total length: 13.0 m
 - rf-power: (0.95+0.28) MW (heat+beam)
 - max. electric surface field : 0.99 E_k (today: 0.95 E_k)
 - transv. beam dynamics layout to started ...

	-	-				-	
# cell	length	E(surf)/Ek		U(gap)	b_in	E_in	gap/cell
0	1,52E+02	0,997237072	0,108413	2,88E+05	0,0546	1,391578	0,239574
1	1,53E+02	0,996324675	0,108415	2,91E+05	0,055085	1,416442	0,239376
2	1,54E+02	0,993390732	0,108412	2,93E+05	0,05557	1,441573	0,239174
3	1,56E+02	0,992124759	0,108411	2,96E+05	0,056055	1,466937	0,238997
4	1,57E+02	0,988525382	0,108412	2,98E+05	0,056542	1,492571	0,238808
5	1,58E+02	0,983101175	0,108412	3,01E+05	0,057029	1,518462	0,238642
6	1,60E+02	0,983902734	0,108411	3,03E+05	0,057517	1,544614	0,238503
7	1,61E+02	0,982321995	0,108413	3,06E+05	0,058005	1,571027	0,238367
8	1,62E+02	0,979789461	0,108414	3,09E+05	0,058495	1,597727	0,238236
9	1,64E+02	0,976062701	0,108413	3,11E+05	0,058985	1,624698	0,238091

- existing UNILAC cannot reach FAIR requirements
- sections which cause drop of beam quality have been identified
- upgrade plans:

B2014 54" ICF/

- source: improved extraction system
- LEBT: no bends, uranium only
- RFQ: lower surface fields & acceptance
- MEBT: replace RFQ-super lens with: 2 triplets, 1 buncher, i.e. more knobs
- stripper section:
 - new stripping gases & pressures
 - include option for hor \rightarrow ver emittance transfer
- post-stripping DTL:
 - no mixed rf-pulse length operation, new tube shape
 - currently Alvarez type preferred