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Crash Survey of Integrable Optics

3



The properties of linear strong focusing

• Strong focusing is robust because it is integrable

– Two transverse Courant-Snyder invariants

• orbits are integrable — regular, bounded, periodic motion

• KAM theorem notably does not apply to linear systems

– KAM Thm does not apply to linear systems
• single tune makes whole system unstable to resonant perturbations

• higher-order effects such as chromaticity restore some stability

– Linearity leaves system susceptible to parametric resonances
• core-halo

• resistive wall instability

• beam break-up

• …
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Additional stability from nonlinear integrable optics
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• Key ideas:

– A system with large tune spread…
• fast Landau damping

• suppresses parametric resonances

• promises beam transport with lower losses

– … but integrable dynamics
• KAM Thm provides stability

• on-momentum orbits are bounded and regular

• perturbations lead to resonant lines… 

• …but orbits must diffuse out of dynamic aperture

– so we expect stable beam dynamics in space charge



Conditions for Integrability
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• Bertrand-Darboux equation

– Hamiltonians with 2nd invariants quadratic in momentum satisfy:

• differential equation is linear

• any superposition of potentials that satisfy this differential equation will have 
a 2nd invariant and be integrable

– Other auxiliary conditions for accelerators:

• matched beta functions in the drifts with these nonlinear elements

• equal vertical and horizontal linear tunes



Nonlinearities suppress parametric resonances
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Dispersion & Chromaticity
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Dispersion & Chromaticity I
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• Off-momentum particles couple motion to energy

– Linear lattice chromaticity:
• energy-dependent tune could cross nonlinear resonance

• no loss of integrability (assuming linear RF bucket/coasting beam)

– Linear lattice dispersion:
• large dispersion can cause large beam size

– Potential problems for elliptic potential
• unequal tunes violates the Bertrand-Darboux equation

• dispersion violates the equal beta function requirement

– Conclusions:
• defocussing quadratic perturbation due to differing chromaticities

• already have large tune spreads — no need to remove all the chromaticity



Single-turn Map
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Figure from S. Nagaitsev, “IOTA Physics Goals” (2012)

Single turn map



Single-turn Map
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Dispersion & Chromaticity II
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• Computed for the continuously varying magnet

– Details in extra slides… 

– Compute single-turn map as

– and the related Hamiltonian

– For the Bertrand-Darboux potential, we require:
• Very particular form for U

• equal vertical and horizontal linear tunes



Dispersion & Chromaticity III

• New Set of Design Rules:

– Twiss parameters
• require equal beta functions to get desired cancellation

• effective double-focusing lens for on-momentum linear map

– Chromaticity
• transverse tunes must be equal

• familiar chromaticity correction schemes sufficient

• correct to make Cx = Cy

– Dispersion
• dispersion modifies the integrable potential

• drift section for elliptic magnets must be dispersion-free
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Space Charge & Invariants
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Presence of Space Charge Changes Distribution
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Presence of Space Charge Changes Distribution
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Presence of Space Charge Changes Distribution
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But the transverse beam distribution is static…
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After 700+ turns, 
transverse phase space 
remains static

Transverse beam size has 
initial growth, followed by 
very small variations



What’s going on?
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• Hamiltonian now contains self-consistent space charge
– Hamiltonian given by

– [G] ∝ [current]
• intensity-dependent effects induce diffusion

• distribution diffuses to fill “potential”

• achieves steady state through space charge induced stochasticity

– Speculation, requires better evidence
• diffusion rate ∝ current

• actual calculation (unlikely)

1see, e.g., Lichtenberg & Lieberman, §5.4



What’s going on?
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• Diffusion in Action Space
– Fokker-Planck Equation for perturbed integrable systems1

– Modified Hamiltonian with space charge

– Particles drift in effective potential and diffuse
• some steady state reached

• some particles diffuse out of the potential well

• complicated by resonance islands, correlations, nonlinear Fokker-Planck… 

1see, e.g., Lichtenberg & Lieberman, §5.4



Future Work
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• What do the chromaticity corrections do to the invariants?
– What do sextupoles, etc., do the the dynamic aperture?

– How to minimize the impact on the beam?

– What is the diffusion time for particles on resonance?

• What does space charge do?
– How does space charge affect the invariants?

– What can be done to compensate space charge?

– Is there a collective invariant that remains?



Thank you for your attention
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Digression on Lie Operators
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• Lie operators from Poisson brackets

– Advantages
• can multiply maps, cannot multiply Hamiltonians

• maps make coördinate transformations into similarity transformations

– Disadvantages
• a lot of formalism to get to the physics

• difficult to work with time-varying Hamiltonians

• Key Identities

• BCH Identity

• Similarity transformation



When are sextupoles optically transparent?
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• Lie operator approach

• Off-momentum particles do not cancel exactly because θ is 
energy-dependent. This is the basis of chromaticity correction.



• Pictorial approach (design momentum)

When are sextupoles optically transparent?
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• Pictorial approach (off-momentum)

When are sextupoles optically transparent?
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The horror… 
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… the horror
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Normalized coördinates

Courant-Snyder

Parameterization
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The Danilov-Nagaitsev potential normalizing trick as follows:
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Final transfer map in normalized coordinates




