Understanding Beam Losses in High-Intensity Proton Accumulator Rings

R. Macek, Los Alamos National Lab 11/11/14

Co-author: J. Kolski

Special thanks to the many colleagues who contributed over the years

Outline

Introduction: Example - the Los Alamos Proton Storage Ring (PSR)

Measuring beam losses at PSR

• Beam loss data (typical ~0.0025 fractional loss) and activation MAP at PSR

Significant Beam Loss Mechanisms in PSR

- Nuclear and large angle Coulomb scattering in the injection stripper foil (~60-75% of total loss)
- H0(n) excited states from stripper foil that Lorentz strip in downstream magnets (~15-25% of total loss)
- Extraction losses (<10% of total loss)
- Space charge emittance growth (not significant at routine operating currents)
- Betatron Resonance crossing, can be avoided by suitable operating point
- Beam instabilities, in particular, the two-stream e-p instability (generally avoided)
- **Modeling beam losses at PSR: MAD8/ORBIT, G4Beamline**
- **Conclusions and prospects for the future**

PSR Layout today

Beam loss monitoring at PSR

Typical Beam Loss and Activation Map for PSR

Typical beam for operations **~110 A** Typical beam loss **~0.0025 (0.28 uA, 225W)** Compare to SNS (1mA, $-2x10^{-4}$ loss)

Losses measured from sum of Ion Chamber (IR) readings and a calibration constant

Activation data **(shown in color)** are from a survey taken after a day of cool down, measurements are at 30cm from beam pipe Activation has a reasonable correlation with the time averaged loss monitor data

Losses from scattering in the injection stripper foil

Nuclear and large angle Coulomb scattering (65-75% of total loss)

- Well known cross-sections
- Depends on number of foil hits by stored beam, typically **~100-150** for average beam proton in "production" beam use for spallation neutron source
	- Obtained from ACCSIM or **ORBIT simulations** and**/**or from **calibrated foil current measurements** (need to measure SEY as well)
	- Graph below from $1/17/03$ data for 115 μ A production beam; foil current and SEY of 1.06% (measured 6/13/02) imply **~70 foil hits/proton**

Simple estimate of Coulomb scattering losses

 For large angle Coulomb scattering use a simple model of on-axis, pencil beam hitting the foil and limiting acceptance angles, θ_{xl} or θ_{vl} , obtained from limiting apertures, X_A and Y_A $q_{x1}^2 = \frac{X_A^2}{b_b}$ and $q_{y1}^2 = \frac{Y_A^2}{h_B}$

■ For single Coulomb scattering use the Rutherford formula in small angle\n\n
$$
{}^{\text{1}_{x1}} b_{fx} b_{xA} = {}^{\text{1}_{y1}} b_{fy} b_{YA}
$$

For single Coulomb scattering use the Rutherford formula in sn approximation (from Jackson, "Electrodynamics", eqn. 13.92)
\n
$$
\frac{d\sigma}{d\Omega} \approx \left(\frac{2Ze^2}{pv}\right)^2 \frac{1}{\theta^4} = \frac{C_0}{\theta^4} \qquad \theta^2 = \theta_x^2 + \theta_y^2 \quad C_0 = \left(\frac{2Ze^2}{pv}\right)^2 = \left(\frac{2Zm_e r_e}{\gamma \beta^2 M}\right)^2
$$

For typical PSR production beam $\theta_{xl} = 7$ mr, $\theta_{yl} = 3.3$ mr; integrating the differential crosssection over the region outside the ring acceptance from $|\theta_x| = \theta_{\sf x|}$ to ∞ and $|\theta_y| = \theta_{\sf y|}$ to ∞ gives

$$
S_{lost} = C_0 \frac{\hat{e}}{\hat{e}} \frac{1}{q_{xl}q_{yl}} + \frac{1}{q_{xl}^2} \tan^{-1} \frac{\hat{e}}{\hat{e}} \frac{q_{yl}}{q_{xl}} \frac{\hat{v}}{\hat{v}} + \frac{1}{q_{yl}^2} \tan^{-1} \frac{\hat{e}}{\hat{e}} \frac{q_{xl}}{q_{yl}} \frac{\hat{v}}{\hat{v}} \frac{\hat{v}}{\hat{v}}
$$

• The probability (per foil traversal) of a single large angle scattering that leads to particle loss is P=N σ_{lost} , where N = N₀ ρ /A is the number of atoms per unit volume; for PSR parameters (above) and a 400 μ g/cm2 carbon foil $P = 6.1 \times 10^{-6}$ per foil traversal or, for a typical 150 foil hits/proton, the fractional loss from large angle Coulomb scattering **is 0.00091**

σlost

Estimates of foil scattering losses cont'd

- **Nuclear scattering includes nuclear reactions plus elastic and quasielastic scattering**
	- Use published data (from PDG handbook) on nuclear collision lengths for carbon i.e., λ_T = 59.2 g cm⁻², thus the fractional loss from 150 foil traversals is **0.00102**, which is about the same as for large angle Coulomb scattering from previous slide
- **Thus, the foil scattering loss = sum of losses from large angle Coulomb loss + loss from nuclear scattering = 0.0019 (for 150 foil traversals per proton) as estimated by the simple model model above and previous slide**
	- Compare with typical total fractional loss of ~ 0.0025
- **Can also use ORBIT simulation/tracking code with nuclear and Coulomb foil scattering built in (more later); gives result for production beams in basic agreement with measurements and the simple model**

Example of loss from an excited state of H0

- **Plot showing horizontal beam phase space ellipses projected to entrance of first dipole (SRBM11) down stream of stripper foil**
	- n=4 Stark state: $n1=3$, $n2=0$, $m=0$
	- Strips part way into magnet and resulting H+ is bent \sim 11 mr less than protons from foil and falls outside acceptance of the ring
- **n=1 and 2 states are not stripped**
- **All of n=3, n=4, and n=5 Stark states are stripped and most are lost**
- **Higher Stark states strip easily and contribute to halo**

Estimating loss characteristics from H0(n>2)

- **Use formulas from Damburg and Kolosov* for line width of Stark states and from this obtain stripping probability as a function of magnetic field**
	- From these calculate $\Delta\theta$ for the H+ (and width of $\Delta\theta$ band for each Stark state) in fringe field of dipole to see if it falls outside the acceptance
	- Example below for n=4: 3 0 0 state

* "Rydberg States of Atoms and Molecules", Edited by R. F. Stebbings (Cambridge University Press, Cambridge 1986)

- **We use yield/cross-section data for excited states from LANL experiments (Gulley etal, Phys Rev A, vol 53 p3201 (1996)) to calculate yield of various excited states for foil in use.**
	- Observed sum of excited state losses (next slide) agree within a factor of ~2 with the yield from Gulley et al

U N C L A S S I F I E D

Measuring losses from excited states

- **Total losses during accumulation can also be monitored by a fast response system (~10 ns) of 10 Scintillation detectors (LM) opposite each ring dipole.**
- **The State** "**1 st turn losses**" **(excited states) by storing for ~ 100 s after end of accumulation and measuring LMsum signal** "**drop**" **at end of accumulation**
	- Example below from experiment $6/11/2002$ with 4-layer carbon foils (\sim 400 μ g/cm2) of that era
	- Total fractional losses during accumulation were ~ 0.0047, and data from pictures below indicates that excited state losses were **44%** of total losses, somewhat higher than typical
	- Results for HBC foil in 2010 showed excited state loss were **18%** of the total loss

Extraction Losses at PSR

- **Measured by special fast detectors located on wall opposite dipoles in sections 8, 9, 0, 1 and 2**
	- Designed to avoid saturation on fast loss
	- SRLV are standard scintillation-based loss monitors with last 4 photo multiplier dynodes shorted to reduce gain
	- SRVE are plastic scintillator detectors using vacuum photodiodes which won't saturate on extraction losses
		- Sample ΣSRVE signal (integrated) from a log book showing jump at extraction
		- The jump is proportional to the extraction loss
		- Calibrated by spilling (extraction septum magnets off) single beam pulse with known charge in 1-turn extraction
		- Calibration constant has factor of 2 or so uncertainty

Typical extraction loss per turn is ~1 nC (~5-10% of total loss)

• Roughly consistent with activation at extraction septum region

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Effect of Space Charge on Measured Losses

- Studied in an experiment where beam was accumulated for 1225 μ s with **production injection offset and then vary intensity with jaws at front of linac**
- 9/18/01 PW=280 ns, 10/17/01 PW=260 ns, last point at 10.15 µC had PW=285 ns
- Space charge does not significantly influence losses below 6 μ C/pulse

Modeling losses at PSR

- **Use ORBIT (J. Holmes et al, SNS) with MAD8 matrices for the ring lattice model**
- ORBIT tracking includes nuclear and Coulomb scattering in the foil, **space charge effects, painting with programed bump magnets but production and stripping of H0(n) excited states is not included**
	- Losses from H0(n≥3) simulated by manually introducing appropriate angular error for various stark states at entrance to first dipole (1.2 T field) after foil
		- Those for $n=3$ and most of $n=4$ lost in first $\frac{1}{4}$ turn after stripping
	- Use numerous "black" apertures in various magnets to obtain losses of proton beam
	- Use **G4beamline** code (T. Roberts, Muons, Inc.) to model energy deposited in loss monitors with proton loss local distribution from ORBIT as input
		- Energy deposited per lost proton consistent with ion chamber loss monitor calibration; (more detailed example in later slide on the new IR calibration)
- **Example: Model accumulation of 5 C/macropulse production beam (2/3/14) with measured injection offset (with ~25% error) and measured injected beam phase space distribution (from 2010 experiment)**

ORBIT modeling of production beam losses cont'd

- **Model gave 0.0023 fractional losses (excited state and extraction losses not included) compared to 0.0024 measured total fractional loss (from IR loss monitoring system)**
	- Distribution of lost particles (from simulation) below

Compare data and simulated profiles at extraction wire scanners

- **Production beam Feb 3, 2014; wire scanners rowx2x, rowx2y**
- **Pata in red, simulation histogram blue**
- Reasonable agreement between data and simulation, given noise in wire **scanner position signal**

Compare simulation and data for longitudinal profile

Production beam Feb 3, 2014

- Signal (red) from wall current monitor at extraction
- RF buncher phase shift improves centroid match but increases losses in simulation

Operated by Los Alamos National Security, LLC for NNSA

Slide 18

RJM 11/11/14

Revised IR monitor "calibration" and uniformity checks

Old method: used known intensity of coasting beam with no extraction

- Concern: even with various local bumps, losses appear mostly in just a few spots
- **New method: use standard bunched beam accumulation for 625 µs and a short store (100 s) plus extraction but use large bumps to lose a large fraction (50% or more) of the beam**
	- Use a low intensity beam of ≤ 0.4 μ A average current in order to limit activation of ring during the large fractional loss measurements
- **Get a decent measure of lost beam intensity using wall current monitor (SRCM42) signal difference for a low loss, well centered beam and the beam with losses from a large bump**
- **Losses are more localized at calculated bump locations and avoid the uncertainty of loss locations and shielding effects during the long store of the coasting beam calibration method**
	- ORBIT simulations with large bumps show most of the beam is lost in one quadrupole at the bump location

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

IR System Responses using new method, 10/31/12

- **625 s, accum., 100 µs store**
- **IR28 excluded from average**
- **Losses for each bump are well localized for this method**
- **H_Avg/V_Avg** = 1.5

Aug 1998 cal. = 13,596 $(counts/\mu A)$

 No need to change existing calibration from old method, but be aware of the new results on variability; the absolute loss will depend on the actual loss pattern, which does not change much for typical production beams

G4beamline simulation of loss in SRQF41 for -43 mm H bump

- ORBIT losses in QF41 aperture extrapolated back to point 0.5 m in front of QF41
- **Visualization picture shows tracking of 10 lost particles and their secondaries (positives:blue, neutrals:green, negatives:red)**
- **Energy deposited in various objects tallied in a table**

Energy deposited in IR's compared with calibration data

Example for -43 mm Horizontal bump in Section 4 (lost in SRQF41)

- G4beamline simulation gave **5.78x10-6** MeV/gram/(lost proton) for the sum of 6 IR's (IR49 through IR78)
- The sum of measured IR signals for this bump gives **8.98x10-6** MeV/gram/(lost proton)
- Ratio simulation/measured $= 0.64$

Compare distribution of energy deposited in IR's

Energy Deposited in IR's for loss in SRQF41

Summary and conclusions

- **The main beam losses mechanisms for PSR have been studied extensively and are now well-understood**
- Observed fractional beam loss at PSR is typically 0.0025 ± 0.0005 for **production beams after empirical optimization by operators**
	- ~75 % of the loss is from foil scattering and the remainder from excited states of H0 and extraction losses
	- SNS has an order of magnitude lower fractional loss but for a factor of 12 higher beam power
- **The combination of ORBIT and G4Beamline are valuable tools for modeling both losses and the loss monitoring system (IRs) response**
	- Beside energy deposited in IR's, G4Beamline gives distribution of secondaries striking down stream chamber walls, which is needed for modeling electrons for the e-p instability

Future prospects

- **Various improvements to accumulators rings (more aperture, adequate space for separation of H0, H- and H+ beams, continued foil development, use of collimators and active damping of the e-p instability) along with careful attention to detail could lead to ~2-3MW beam power (at ~1GeV) for short pulse spallation sources using H- foil stripping injection.**
- **Injection by laser stripping of H- could solve the major problem of losses from beam interactions with foil, thus permitting even higher intensity.**
	- Proof of principle experiments at SNS are encouraging but many practical issues for reliable implementation in the demanding accelerator environment are likely to take much hands-on experience to identify and resolve
- **A key issue for a short-pulse spallation source at >2 MW beam power is target reliability and lifetime.**
	- 2MW may be the practical limit for short-pulse spallation neutron sources
- **ESS** is a long-pulse spallation source designed for 5MW, is now under **construction and is a promising future direction for high-power spallation neutron sources.**

Backups

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Slide 25 RJM 11/11/14

PSR Injection Layout today

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Lifetime of Stark States at PSR

From calculation using Damburg Kolosov formulas

Lifetime of Stark States in Magnetic Field (800 MeV H-)

Add result of changing buncher phase 5 deg in sim

Production Feb 3, 2014

Measure lost current with SRCM42 (green trace)

No bumps, standard accumulation, measure current at extraction

H bump out -45 mm sect 2, measure current at **Extraction**

LMsum signal blue

LM39 signal yellow

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

IR Response Patterns for H "out" bumps for 1998 Calib.

IR patterns for H "out" bumps, new calibration method

Control of the two-stream e-p instability at PSR

Principle Characteristics

- Transverse coherent beam motion driven by electron cloud
- Main electron source: amplification of "seed electrons" (from beam losses etc) by trailing edge multipactor; with ejection from Quadrupoles by ExB into drift spaces
- Amplitude growth times \sim 50-150 μ s (75 μ s typical)
- Frequency 100-250 MHz (bounce frequency of electrons in beam potential)
- **Controlled mainly by Landau damping from the momentum spread generated by higher rf buncher voltage**
	- Threshold intensity a linear function of buncher voltage for fixed bunch width, fixed accumulation time and fixed injection offset
- **The higher momentum spread to control e-p means larger horizontal beam size and some extra beam loss in the ring and extraction line**
- **Inductive inserts largely compensate longitudinal space charge and keep beam out of the gap between bunch passages**
- **Active damping by transverse feedback was demonstrated at PSR**

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

