

Improved beam characteristics from the ATLAS upgrade

HB2014

Clayton Dickerson, Brahim Mustapha, Peter Ostroumov, Richard Pardo, Gary Zinkann, Zack Conway, Mike Kelly, A. Perry, S.I. Sharamentov, Scott Gerbick, Mark Kedzie, Sang-hoon Kim, Yong Lou, Steve MacDonald, Ryan Murphy, Tom Reid, Ken Shepard, Jim Specht

Outline

- ATLAS overview
- ATLAS upgrade
 - Motivation
 - Solutions
- Upgrade results
 - Efficiency
 - Intensity
- Summary

Argonne Tandem Linac Accelerator System (ATLAS)

- Worlds first heavy ion superconducting linac
- Fragment **Mass Analyzer** 3 linac sections Target Gammasphere Area IV 46 accel resonators – split ring and QWR_{HELIOS} In-flight **RIB Gas Cell** Gretina/Gammasphere the state of the state of the **Beamline Hot Lab** CARIBU Split-Pole Spectrometer ECR II Atomic Ion Source **Physics Target Area III ATLAS Linac** ECR I Large Scattering lon Facility Source **Trap Area** RFO. **PII Linac** CARLANDER BARRADER STATE 100 CARAGE CARAGE CARAGE CARAGE **Booster Linac** here and a second 12142142 **General Purpose Beam Line** Accelerator **Control Room** 50 Approximate Scale (in feet) Dickerson | HB2014: Improved beam characteristics from the ATLAS upgrade | 11-Nov 2014 RP081301

ATLAS parameters

- Typical beam emittances
 - $\varepsilon_{x,y rms}$ normalized = 0.03 $\pi \mu m$
 - $\varepsilon_{z rms} = 3 \pi ns-kev/u$

Dickerson | HB2014: Improved beam characteristics from the ATLAS upgrade | 11-Nov 2014

ATLAS Upgrade motivations

- Increase transport efficiency especially for CARIBU beams
- Increase stable beam intensity to 10 pµA for secondary RIBs
- Previous limitations
 - Quality of beam suffered during low velocity acceleration very low β_{OPT} PII cavities
 - Excessive steering from split-ring resonators limits intensity due to beam losses

Old configuration

- PII bunching 4-harmonic buncher (12.125 MHz fundamental), 24.25 MHz buncher, chopper
- Beam velocity into PII: 0.008c
- All Booster resonators: split-ring

FRAGMENT

MASS ANALYZER

TARGET

AREA IV

GENERAL

PURPOSE

Solutions

Efficiency

- Removed first three low β_{OPT} (0.008 and 0.015), small aperture (ø15 and ø19 mm) cavities from PII linac
- Designed and installed RFQ to gradually accelerate, focus, and bunch beam into PII
- Remove chopper and 24.25 MHz buncher
- Create MEBT inside first PII cryostat
 - Installed electrostatic steerer
 - One resonator repurposed as a buncher
- Intensity
 - Remove split ring cavities
 - Replace with cryostats of QWR

CW RFQ - Operation since Jan 2013

Sinusoidal and trapezoidal vane tip modulation

Parameter	Value
Input energy	30 keV/u
Output energy	296.5 keV/u
Frequency	60.625 MHz
Vane voltage	70 kV
rf power calculated	52 kW
by MW-STUDIO	
Average aperture radius	7.2 mm
Length	3.81 m
Transverse normalized	2π mm mrad
acceptance	
Longitudinal rms	$20\pi \text{ deg} \cdot \text{keV/u}$
emittance	(at 60.625 MHz)
	0.9π nsec · keV/u
Bunching	External 4-harmonic

TABLE I. Basic parameters of the RFQ.

Bunch Shape, Energy Spread and Transverse Profile

Output radial matcher

- RFQ forms axially symmetric output beam
- No additional matching needed for PII solenoid lattice

Ostroumov PRST-AB 15 (2012) 110101

Beam dynamics of new configuration

Dickerson | HB2014: Improved beam characteristics from the ATLAS upgrade | 11-Nov 2014

4

-4

Removed beam chopper

Due to favorable combination of operating frequencies

• 60.625 MHz RFQ bunches

48.5 MHz resonator profile

Removed beam chopper

Due to favorable combination of operating frequencies

60.625 MHz RFQ bunches —48.5 MHz resonator profile

RFQ at Permanent Location

 Fine frequency tuning is provided by the driver RF phase

Measured RFQ+PII Energy and Time Profile, 202Hg+31

- Initial conditioning reached 74 kV inter-vane voltage after 5 hours conditioning
- Provides 83% acceleration efficiency through PII (~1.5 MeV/u) as designed
- Many ion beam species have been accelerated and used for experiments, from Li to U

Transmission efficiency

- From PII entrance to target
 - Previously 40-60%
 - Now up to 80% Gammasphere Increase of 50-100% ____ In-flight **RIB Gas Cell** es meneration Hot Lab

Fragment **Mass Analyzer**

Target

Area IV

High intensity runs

- Goal: Intensity up to 10 pµA
- Mainly envisioned for in-flight RIB production (transfer reactions)
- Only QWR can be used (presently 28 resonators) to avoid excessive steering by split-rings
 - PII (early 1990s)
 - Energy upgrade cryostat at end of ATLAS linac (2009)
 - New Booster cryostat (2014)
- Energy up to ~10 MeV/u
- Made possible by replacing split-ring resonators . . .

Cryomodule of 7 QWRs and 4 SC Solenoids

- Seven β = 0.077, 72.75 MHz quarter-wave cavities
- Four 9-Tesla superconducting solenoids
- Replaces 3 old cryomodules with split-ring cavities
- Total design voltage is 17.5 MV, 4.5K cryogenic load is 70 W

5.2 m long x 2.9 m high x 1.1 m wide

New 72.75 MHz QWR

- Double conical highly-optimized design with steering correction
- Stainless steal helium jacket, brazed niobium–SS transitions
- Wire EDM instead of machining of EBW joints
- EP of the cavity after all fabrication work including He vessel is complete
- Central conductor was aligned to minimize microphonics

	Design
V, max. voltage gain, MV	2.5
E _{PEAK} , MV/m	40
B _{PEAK} , mT	60
G, Ohm	26
R _{sh} /Q, Ohm	575
Cryogenic load at 4.5K, W	<10

New resonator steering correction

- Faces of drift tubes angled by ~3 degrees
- E field compensates steering from B field on axis

Cryostat operation

- Since April 2014
- Amplitudes limited by LLRF ability to phase lock cavities
- 4 kW amplifier power available, ~2 kW used

Average	Current Operation	Available
V _{EFF}	2.5 MV	3.75 MV
E _{PEAK}	40 MV/m	60MV/m
LHe, 4.5K	5 W	12 W

High intensity results and plans

- To date 7.5 pµA of ⁴⁰Ar at 1.5 MeV/u has been delivered to the entrance of Booster
- Currently there are no targets at ATLAS capable of accepting 10 pµA at 10 MeV/u (1.2 – 10 kW)
- We are developing a chicane separator (AIRIS) with a liquid film target to take advantage of ATLAS full intensity
- We have plans to test high intensity beam through Booster and ATLAS linacs in early 2015

Summary

- Radioactive beams are driving ATLAS upgrades
 - Low intensity CARIBU beams require high efficiency
 - Secondary in-flight beams require high intensity
- 50 100% efficiency increases from improvements in low energy bunching and acceleration
 - Removed problematic low $\boldsymbol{\beta}$ resonators
 - Design and installation of CW RFQ
 - MEBT integrated into first PII cryostat
- New cryostat will enable acceleration of 10 pµA to 10 MeV/u
 - Resonator design optimized to eliminate unwanted steering
 - World class accelerating gradients enable useful beam energies
- One more cryostat of QWR can replace performance of all remaining split-rings (3 cryostats, 18 resonators)