

1

Development for End-to-End Modeling of Accelerators

Ji Qiang

Lawrence Berkeley National Laboratory

HB2014, East Lansing, MI, Nov10-14, 2014

Why end-to-end modeling of accelerator?

- Provides a virtual machine prototype
 - direct diagnostic of machine design
 - training application software
- Provides global machine design parameter optimization
- On-line beam dynamics tuning/optimization

What are needed for end-to-end modeling

- Necessary beam physics models
 - beam generation
 - beam acceleration and transport

- ...

- Efficient computational methods
 - particle pusher
 - field solver

- ...

- Advanced computer hardware and software
 - multi-processor computer

Some Beam Physics Models

- Ion beam formation model
- RF linac beam dynamics model
- Ring beam dynamics model
- Beam beam model for colliders

Simulation of Ion Beam Formation

- Model of electrode shape and voltage
- Model of external focusing magnets:
 - Dipole, quadrupole, solenoid, ...
- Fully 3D space-charge model with complex geometry
- Plasma sheath model
- Multi-charge state

raction of particles inside the LEBT

Ion Trajectories and Equal Potential Lines in a Simulation of Ion Beam Formation from VENUS Ion Source

0.025

Linac Beam Dynamics Model

- Model of RF cavity
 - Transfer map
 - Direct integration
- Model of external focusing magnets:
 - Dipole, quadrupole, solenoid, ...
- Space charge model
- Longitudinal and transverse wakefields
- Coherent Synchrotron radiation (CSR)/ISR
- Multi-charge state Maximum Radius Evolution with

Transverse RMS Sizes and Maximum Amplitude Evolution in an SNS Linac

Ring Accelerator Beam Dynamics Model

- Injection painting
- Accelerating cavity model
- External focusing magnets:
 - Dipole, quadrupole, sextupole, ...
- Space charge model
- Longitudinal and transverse wakefields
- Coherent Synchrotron radiation (CSR)/ISR
- Electron cloud model
- Multi-turn

4 GeV, 6 GeV and 8 GeV Energy

rrrr

Transverse Emittance Evolution with Different Proton Intensity

Beam Beam Model for Colliders

- Different collision geometries
- Multiple-slice for finite bunch length effect
- Multiple bunches
- Multiple collision points
- Wakefield

3.5

2.5

1.5

0.1

0.15

normalized luminosity

- Feed back model
- Different compensation schemes:

luminosity vs. beta* with 400.79 MHz crab cavity

uminosity

0.5

0.45

0.4

0.55

С

- Conducting wire
- Electron lens
- Crab cavity

with crab cavity

no crab cavity

0.2

0.25

0.3

beta'

0.35

Efficient Numerical Methods

- Split-Operator method
- Efficient Space-Charge Solvers

Split-Operator Method

- Rapidly varying s-dependence of external fields is decoupled from slowly varying space charge fields
- Leads to very efficient particle advance:
 - Do not take tiny steps to push millions billions of particles
 - Do take tiny steps to compute maps; then push particles w/ maps

AWRENCE BERKELEY NATIONAL LABORATORY

Efficient Space-Charge Solvers (Nlog(N))

- FFT based integrated Green's function method
- Spectral-Integrated Green's function method
- 3D Spectral method

J. Qiang, in these proceedings.

AWRENCE BERKELEY NATIONAL LABORATORY

Reduce Computing Time with Parallel Computers i

Parallel Implementation Matters!

Speedup as a function of number of processors on IBM SP3 with particlefield decomposition, particle decomposition and domain decomposition

LAWRENCE BERKELEY NATIONAL LABORATORY

rrrr

BERKELEY

Multi-Level Parallelization

14

Table 1: Weak Scaling Test on Cray XT-5			
processors	time (sec)	problem size	efficiency
6400	2522	100	1
12800	2611	200	0.97
25600	2700	400	0.93
51200	2890	800	0.87
102400	2710	1600	0.93

Parallel Optimization of the LHC Luminoisty Using a Unified Differential Evolution Method

An Example of End-to-End Simulation: (A Next Generation X-Ray FEL Light Source)

Potential End-to-End Simulation for Existing/Construction Accelerators

FRIB: Doable with Current Computing Capabilities

LAWRENCE BERKELEY NATIONAL LABORATORY

AWRENCE BERKELEY NATIONAL LABORATORY

LHC: Can We Do It?

rrrr

Start the protons out here

Advancement of Computers

BERKELEY LAB

Thank You!

LAWRENCE BERKELEY NATIONAL LABORATORY