Needs, considerations and solutions for a consortium of accelerator modeling

J.-L. Vay

Lawrence Berkeley National Laboratory

HB2014

East Lansing, MI 10-14 November 2014

54th ICFA Advanced Beam Dynamics

Workshop on High-Intensity, High Brightness and High Power Hadron Beams

Accelerators are essential tools of science and tech.

There are > 30,000 particle accelerators in operation around the world,

serving:

- discovery science,
- medicine,
- industry,
- energy,
- the environment,
- national security.

Size and cost are a limiting factor for many applications

→ active research worldwide to conceive smaller & cheaper accelerators.

Computer modeling is key to progress

Essential for increasing performance, bringing size and cost down:

- optimizing existing accelerators,
- cost effective design,
- game changing technologies.

Computer modeling is key to progress

Essential for increasing performance, bringing size and cost down:

- optimizing existing accelerators,
- cost effective design,
- game changing technologies.

Trend requires team work

increasingly complex accelerators call for increasingly sophisticated simulation software

- Current situation is inefficient
 - numerous codes within projects with little coordination or reuse
 - no dedicated funding for development, support & training
 - → especially problematic for codes with growing popularity

Example of duplication in beam dynamics codes

Codes section from Accelerator Handbook (A. Chao, 2013)

Beam Dynamics Codes:

(Below, PIC refers to codes with particle-in-cell space-charge capability.)

Code	URL or Contact	Description/Comments
ASTRA	tesla.desy.de/~meykopff	3D parallel, general charged particle beams incl. space charge
AT	sourceforge.net/projects/atcollab/	Accelerator Toolbox
BETACOOL	betacool.jinr.ru	Long term beam dynamics: ECOOL, IBS, internal target
Bmad, Tao	www.lns.cornell.edu/~dcs/bmad/	General purpose toolbox library + driver program
COSY INFINITY	www.cosyinfinity.org	Arbitrary-order beam optics code
CSRTrack	www.desy.de/xfel-beam/csrtrack	3D parallel PIC; includes CSR; mainly for e- dynamics
Elegant/SDDS suite	aps.anl.gov/elegant.html	parallel; track, optimize; errors; wakes; CSR
ESME	www-ap.fnal.gov/ESME	Longitudinal tracking in rings
HOMDYN	Massimo.Ferrario@LNF.INFN.IT	Envelope equations, analytic space charge and wake fields
IMPACT code suite	amac.lbl.gov	3D parallel multi-charge PIC for linacs and rings
LAACG code suite	laacg.lanl.gov	Includes PARMILA, PARMELA, PARMTEQ, TRACE2D/3D
LiTrack	www.slac.stanford.edu/~emma/	Longitudinal linac dynamics; wakes; GUI-based; error studies
LOCO	safranek@slac.stanford.edu	Analysis of optics of storage rings; runs under matlab
LUCRETIA	www.slac.stanford.edu/accel/ilc/codes	Matlab-based toolbox for simulation of single-pass e- systems
MaryLie	www.physics.umd.edu/dsat	Lie algebraic code for maps, orbits, moments, fitting, analysis
MaryLie/IMPACT	amac.lbl.gov	3D parallel PIC; MaryLie optics + IMPACT space charge
MAD-X	mad.web.cern.ch/mad	General purpose beam optics
MERLIN	www.desy.de/~merlin	C++ class library for charged particle accelerator simulation
OPAL	amas.web.psi.ch	3D parallel PIC; cyclotrons, FFAGs, linacs; particle-matter int.
ORBIT	jzh@ornl.gov	Collective beam dynamics in rings and transport lines
PATH	Alessandra.Lombardi@cern.ch	3D PIC; linacs and transfer lines; matching and error studies
SAD	acc-physics.kek.jp/SAD/sad.html	Design, simulation, online modeling & control
SIMBAD	agsrhichome.bnl.gov/People/luccio	3D parallel PIC; mainly for hadron synchrotrons, storage rings
SIXTRACK	frs.home.cern.ch/frs/	Single particle optics; long term tracking in LHC
STRUCT	www-ap.fnal.gov/users/drozhdin	Long term tracking w/ emphasis on collimators
Synergia	https://compacc.fnal.gov/projects	3d parallel PIC: space charge, nonlinear tracking and wakes
TESLA	lyyang@bnl.gov	Parallel; tracking; analysis; optimization
TRACK	www.phy.anl.gov/atlas/TRACK	3D parallel PIC, mainly for ion or electron linacs
LIBTRACY	libtracy.sourceforge.net/	Library for beam dynamics simulation
TREDI	www.tredi.enea.it	3D parallel PIC; point-to-point Lienard-Wiechert
UAL	code.google.com/p/ual/	Unified Accelerator Libraries
WARP	DPGrote@lbl.gov	3D parallel ES and EM PIC with accelerator models
ZGOUBI	sourceforge.net/projects/zgoubi/	Magnetic optics; spin; sync radiation; in-flight decay

Example of duplication in beam dynamics codes

Codes section from Accelerator Handbook (A. Chao, 2013)

Beam Dynamics Codes:

(Below, PIC refers to codes with particle-in-cell space-charge capability.)

Code	URL or Contact	Description/Comments
ASTRA	tesla.desy.de/~meykopff	3D parallel, general charged particle beams incl. space charge
AT	sourceforge.net/projects/atcollab/	Accelerator Toolbox
BETACOOL	betacool.jinr.ru	Long term beam dynamics: ECOOL, IBS, internal target
Bmad, Tao	www.lns.cornell.edu/~dcs/bmad/	General purpose toolbox library + driver program
COSY INFINITY	www.cosyinfinity.org	Arbitrary-order beam optics code
CSRTrack	www.desy.de/xfel-beam/csrtrack	3D parallel PIC includes CSR; mainly for e- dynamics
Elegant/SDDS suite	aps.anl.gov/elegant.html	parallel; track, optimize; errors; wakes; CSR
ESME	www-ap.fnal.gov/ESME	Longitudinal tracking in rings
HOMDYN	Massimo.Ferrario@LNF.INFN.IT	Envelope equations, analytic space charge and wake fields
IMPACT code suite	amac.lbl.gov	3D parallel multi-charge PIC for linacs and rings
LAACG code suite	laacg.lanl.gov	Includes PARMILA, PARMELA, PARMTEQ, TRACE2D/3D
LiTrack	www.slac.stanford.edu/~emma/	Longitudinal linac dynamics; wakes; GUI-based; error studies
LOCO	safranek@slac.stanford.edu	Analysis of optics of storage rings; runs under matlab
LUCRETIA	www.slac.stanford.edu/accel/ilc/codes	Matlab-based toolbox for simulation of single-pass e- systems
MaryLie	www.physics.umd.edu/dsat	Lie algebraic code for maps, orbits, moments, fitting, analysis
MaryLie/IMPACT	amac.lbl.gov	3D parallel PIC MaryLie optics + IMPACT space charge
MAD-X	mad.web.cern.ch/mad	General purpose beam optics
MERLIN	www.desy.de/~merlin	C++ class library for charged particle accelerator simulation
OPAL	amas.web.psi.ch	3D parallel PIC cyclotrons, FFAGs, linacs; particle-matter int.
ORBIT	jzh@ornl.gov	Collective beam dynamics in rings and transport lines
PATH	Alessandra.Lombardi@cern.ch	3D PIC; linacs and transfer lines; matching and error studies
SAD	acc-physics.kek.jp/SAD/sad.html	Design, simulation, online modeling & control
SIMBAD	agsrhichome.bnl.gov/People/luccio	3D parallel PIC; mainly for hadron synchrotrons, storage rings
SIXTRACK	frs.home.cern.ch/frs/	Single particle optics; long term tracking in LHC
STRUCT	www-ap.fnal.gov/users/drozhdin	Long term tracking w/ emphasis on collimators
Synergia	https://compacc.fnal.gov/projects	3d parallel PIC: space charge, nonlinear tracking and wakes
TESLA	lyyang@bnl.gov	Parallel; tracking; analysis; optimization
TRACK	www.phy.anl.gov/atlas/TRACK	3D parallel PIC mainly for ion or electron linacs
LIBTRACY	libtracy.sourceforge.net/	Library for beam dynamics simulation
TREDI	www.tredi.enea.it	3D parallel PIC; point-to-point Lienard-Wiechert
UAL	code.google.com/p/ual/	Unified Accelerator Libraries
WARP	DPGrote@lbl.gov	3D parallel ES and EM PIC with accelerator models
ZGOUBI	sourceforge.net/projects/zgoubi/	Magnetic optics; spin; sync radiation; in-flight decay

SLAC ACE3P supports large user community

- **ACE3P** publications User community 25 SLAC - >50 active users in labs, universities & Community industry worldwide 20 Number of papers 15 - growing # of papers from community of users 10 5 0 2009 2010 2011 2012 2013 Year
- User support necessitates sustained effort
 - Code workshops at SLAC (CW09, CW10, CW11 & CW14) and conf. (NAPAC-13)
 - Dedicated website (w/ online tutorials and doc.)
 https://confluence.slac.stanford.edu/display/AdvComp/Materials+for+cw11
 - Phone calls and email exchanges (~20/month)
 - Personal visits to SLAC

Berkeley Lab Accelerator Simulation Toolkit has a worldwide user base

United States

BLASI	Onte	<u>u States</u>	
B – BeamBeam3D	1.ANL (B,I,P)	13.ORNL (I,P)	1.ASLS (I)
I – Impact	2.BNL (B,I,P,W)	14.SLAC (I,P,W)	2.CERN (P,W)
P – Posinst	3.Cornell (I,P)	15.Stanford (I)	3.CIAE (I)
W – Warp	4.FNAL (B,I,P,W)	16.Tech-X (P)	4. DESY (I,W)
	5.ISU (I)	17.Texas A&M (I)	5. Diamond (I
	6.Jlab (B,I,P)	18.U. Chicago (I)	6.ESS (I)
	7.LANL (I,P)	19.UM (W)	7.Fermi/Elett
	8.LBNL (B,I,P,W)	20.UMD (W)	8. Frankfurt (
	🧠 9. LLNL (W)	21.UW (I)	9.GSI (I,W)
A State of the second second	🯓 10.MSU (I,W)	22.UCLA (I)	10.Hiroshima
	11.NIU (I,W)	23.WSU (W)	11.Hong Kon
RAIN - A	12.ODU (I)	24.Yale U (B,I)	12.IBS (I)

3.CIAE (I)	16.KAERI (I)
4. DESY (I,W)	17.KEK (I)
5. Diamond (I)	18.Mumbai Univ. (I)
6.ESS (I)	19.PAL (I)
7.Fermi/Elettra (I)	20.Peking Univ. (I)
8. Frankfurt (I)	21.PSI (I)
9.GSI (I <i>,</i> W)	22.RRCAT (I)
10.Hiroshima U. (W)	23.RAL (I)
11.Hong Kong U. (W)	24.SINAP (I)
12.IBS (I)	25.Technion (W)
13.IHEP (I,P)	26.USTC (I)

14.IMPCAS (I)

15.IRE (I)

Over past year, code developers responded to >500 emails received from >40 research institutes/universities & list is growing. Mostly on overhead with little dedicated funding for support.

Key roles & needs recognized in P5 report

Accelerator modeling contributes to two enabling technologies:

Accelerator Research:

 "The future of particle physics depends critically on transformational accelerator R&D to enable new capabilities and to advance existing technologies at lower cost."

• Computing:

- "The use of **high-performance computing**, combined with **new algorithms**, is advancing full 3-D simulations at realistic beam intensities of nearly **all types of accelerators**."
- "This will enable "virtual prototyping" of accel. components on a larger scale than is currently possible."

Recommendation 29:

"Strengthen the global cooperation ... to address computing and scientific software needs, and provide efficient training in next-generation hardware ... Investigate models for the development and maintenance of major software within and

across research areas ... "

P5 report reinforces conclusions from from Snowmass & HEP computing topical panel (2013)

- "increased coordination of modeling efforts"
- "dedicated support of code modernization, maintenance & dissemination"
- "increase emphasis on use & development of common tools"
- "better user support"
- "more training in HEP computational physics"
- "HEP distributed center for computational excellence (single point-of-contact, cross-cutting activities)"

Consensus that there are issues:

lack of cohesion, support, training....

Question: how do we solve it?

Need of solution for non-disruptive integration

Significant investments of HEP into existing pool of codes:

- essential to minimize disruptions to developers and users,
- while enabling interoperability and expandability.
- **Challenges:**

Need of solution for non-disruptive integration

Significant investments of HEP into existing pool of codes:

- essential to minimize disruptions to developers and users,
- while enabling interoperability and expandability.

Challenges:

Technical

- programming languages
- data formats, parallelism
- code architectures
- open vs proprietary sources
- keep creativity

Human

- changing habits is hard
- different visions
- (re)build trust
- corporatism/rivalry
- recognition
- distance

Existing set of separate codes **→** ecosystem of interconnected codes

Existing set of separate codes **→** ecosystem of interconnected codes

Existing set of separate codes → ecosystem of interconnected codes

Bridge codes to enable:

- unified input/output interface
- **sharing** of functionalities
- **collaborative** development of common units
- "natural" down selection of modules
- devel. & users playing Lego with "code genes"

Existing set of separate codes → ecosystem of interconnected codes

Bridge codes to enable:

- unified input/output interface
- **sharing** of functionalities
- **collaborative** development of common units
- "natural" down selection of modules
- devel. & users playing Lego with "code genes"

Common modules in libraries of compiled C, C++ or FORTRAN

Unified I/O and framework in Python:

- Python scripting language has unique attributes:
 - rapid development and prototyping of scientific applications on par with e.g. Maple, Matlab (which it is often supplanting) is expandable and couples to FORTRAN, C and C++

New initiative:

Consortium for Advanced Modeling of Particle

Accelerators

Points of contact:

LBNL: J.-L. Vay, J. Qiang SLAC: C.-K. Ng, Z. Li FNAL: J. Amundson, E.G. Stern

CAMPA started as LBNL-SLAC collaboration

CAMPA now

CAMPA's mission to address mid/long term needs

Mission:

- develop, maintain, distribute & support an integrated suite of stateof-the-art accelerator computer codes
 - BLAST, ACE3P, SYNERGIA
- promote **collaboration** & **re-use** of codes & data through **common** interfaces, data standards, visualization and analysis capabilities;
- use codes to advance accelerator science through advanced computation
- train new generation in accelerator modeling on the latest hardware
- at the nexus of physics, computing and users

Possible evolution of CAMPA

Accelerator S. & T.

- offers path toward game changer modeling tools
 - virtual prototyping/experiments
 - online modeling for realtime feedback

→ speed up design and innovation

Accelerator S. & T.

- offers path toward game changer modeling tools
 - virtual prototyping/experiments
 - online modeling for realtime feedback

→ speed up design and innovation

DOE

- accelerate discovery
 - ➔ higher return on investment
- single point of contact for modeling tool funding

Accelerator S. & T.

- offers path toward game changer
 modeling tools
 - virtual prototyping/experiments
 - online modeling for realtime feedback

→ speed up design and innovation

DOE

- accelerate discovery
 - ➔ higher return on investment
- single point of contact for modeling tool funding

Code users

 integrated, comprehensive & more capable (multiphysics/multiscale)

software

- **single point of contact** for simulation tool solutions

Accelerator S. & T.

- offers path toward game changer modeling tools
 - virtual prototyping/experiments
 - online modeling for realtime feedback

→ speed up design and innovation

DOE

- accelerate discovery
 - ➔ higher return on investment
- single point of contact for modeling tool funding

Code users

- integrated, comprehensive & more capable (multiphysics/multiscale)
 - software
- **single point of contact** for simulation tool solutions

Code developers

- dedicated funding for user support, algorithmic, code implementation & maintenance
- recognition for acc. software development,
- a carrier path

- virtual prototyping/experiments
- online tools for realtime feedback

Requires team work!!

Novel architectures + integrated

simulation tools can enable:

- virtual prototyping/experiments
- online tools for realtime feedback

Status quo is risky

Requires team work!!

Novel architectures + integrated

simulation tools can enable:

- virtual prototyping/experiments
- online tools for realtime feedback

Status quo is risky

Requires team work!!

Novel architectures + integrated

simulation tools can enable:

- virtual prototyping/experiments
- online tools for realtime feedback

Status quo is risky

Requires team work!!

- virtual prototyping/experiments
- online tools for realtime feedback

Status quo is risky

Requires team work!!

- virtual prototyping/experiments
- online tools for realtime feedback

Requires team work!!

- virtual prototyping/experiments
- online tools for realtime feedback

Requires team work!!

- virtual prototyping/experiments
- online tools for realtime feedback

Requires team work!!

Novel architectures + integrated simulation tools can enable:

- virtual prototyping/experiments
- online tools for realtime feedback

Community modeling effort will enable to adapt & thrive !!!

Thank you for your attention