Two-Dimensional and Wide Dynamic Range Profile Monitor Using OTR /Fluorescence Screens for Diagnosing Beam Halo of Intense Proton Beams

KEK / J-PARC

Y. Hashimoto, T. Mitsuhashi, M. Tejima, T. Toyama

Mitsubishi Electric System Service

H. Akino, S. Otsu, Y. Omori, H. Sakai

- Motivation
- Concept
- J-PARC and 3-50 Beam Transport Line
- OTR by Low γ : 3GeV Proton Beam
- Large Acceptance Optics & Detector
- Scaling for Unified Profile
- Combination Measurement with OTR and Fluorescence
- Simultaneous measurement of beam core and beam halo
- Conclusions

- Motivation

- Concept
- J-PARC and 3-50 Beam Transport Line
- OTR by Low γ : 3GeV Proton Beam
- Large Acceptance Optics & Detector
- Scaling for Unified Profile
- Combination Measurement with OTR and Fluorescence
- Simultaneous measurement of beam core and beam halo
- Conclusions

Beam halo : It brings serious activation of the accelerator by beam loss

What to see?

Two-dimensional density distribution from beam core to beam halo of 3GeV Proton Beam.

Beam Intensity $\geq 10^{13}$ proton/bunch

What kind of instrument?

High Dynamic Range Beam Profile Monitor

Dynamic Range: 10⁶

What is carried out?

Beam diagnosing for injection beam of J-PARC MR which is extracted beam from RCS.

Evaluation for validity of beam collimation by the collimator

- Motivation

- Concept

- J-PARC and 3-50 Beam Transport Line
- OTR by Low γ : 3GeV Proton Beam
- Large Acceptance Optics & Detector
- Scaling for Unified Profile
- Combination Measurement with OTR and Fluorescence
- Simultaneous measurement of beam core and beam halo
- Conclusions

Concept (1): *Dynamic range* Combination measurement with OTR and the fluorescence:

Beam core : Measure with OTR from 10 microns titanium foil with smaller beam loss

Beam Halo : Measure with Fluorescence from Chromium doped alumina screen

Adopting Suitable Gain of the Detector: Image Intensifier (II)

Concept (2): *Energy loss in screen* Combination measurement with OTR and the fluorescence:

Beam core : Measure with OTR from 10 microns titanium foil with smaller beam loss

Beam Halo : Measure with Fluorescence from chromium doped alumina screen

Energy Loss in using material

0, 0	Energy Loss [keV/proton]*	Total Energy Loss [J/bunch]**	
Titanium Foil 10 micron thick	6.7	9.8e-3	48 times larger than 10 micron Ti
Alumina Ceramics 0.5 mm thick	330	4.7e-1	
	* 3GeV Proton,	Used in only 10 ⁻² region: 4.7 e-3 [J/bunch]	

Becomes 1/2 of Ti

Concept (3): Screen Configuration

Layout (Front View)

Concept (4): Screen photo (front view)

OTR

Solid Screen for Beam Core

Fluorescence Movable Alumina Screen for Beam Halo

Concept (5): Two Target Structures

Pre-existing triple screen

 \rightarrow Inserted just after four direction screen

New four-direction alumina screen.

Operate by two horizontal movable shafts.

Concept (6): Screen Configuration-2

Cross Sectional View

Concept (7): Fluorescence time

Light quantity adjustment of the fluorescence from alumina screen longer fluorescence time of 1ms

⇒Changing the Image Intensifier (II) Gate

- Motivation
- Concept

- J-PARC and 3-50 Beam Transport Line

- OTR by Low γ : 3GeV Proton Beam
- Large Acceptance Optics & Detector
- Scaling for Unified Profile
- Combination Measurement with OTR and Fluorescence
- Simultaneous measurement of beam core and beam halo
- Conclusions

J-PARC and 3-50 BT:

Beam Energy: 3 GeV Beam Intensity : 1.6×10^{13} proton/bunch Injection Beam: 2 bunch \times 4 batch

Our monitor usually measured 2bunch (1batch)
Beam collimators located at 122m upper stream

- Motivation
- Concept
- J-PARC and 3-50 Beam Transport Line
- OTR by Low γ : 3GeV Proton Beam
- Large Acceptance Optics & Detector
- Scaling for Unified Profile
- Combination Measurement with OTR and Fluorescence
- Simultaneous measurement of beam core and beam halo
- Conclusions

OTR by Low γ : 3GeV Proton Beam:

• Low γ : 4.2 \rightarrow Larger Angle Spread

- Motivation
- Concept
- J-PARC and 3-50 Beam Transport Line
- OTR by Low γ : 3GeV Proton Beam
- Large Acceptance Optics & Detector
- Scaling for Unified Profile
- Combination Measurement with OTR and Fluorescence
- Simultaneous measurement of beam core and beam halo
- Conclusions

Large Acceptance Optics (1)

- Large Acceptance (±15 deg.)
- Larger Object Size $(100^{H} \times 80^{V} \text{ mm}^2)$
- In vacuum Off-axis Relay Optics

We employed Offner Optics.

Original Offner Scheme

Large Acceptance Optics (2) Clear Aperture Horizontal: 200 mm Vertical: 90 mm

Grid Pattern Test

1mm pitch scale is resolved

Large Acceptance Optics (3)

- Motivation
- Concept
- J-PARC and 3-50 Beam Transport Line
- OTR by Low γ : 3GeV Proton Beam
- Large Acceptance Optics & Detector
- Scaling for Unified Profile
- Combination Measurement with OTR and Fluorescence
- Simultaneous measurement of beam core and beam halo
- Conclusions

Scaling for Unified Profile (1)

For obtaining an UNIFIED profile : Scaling

Gain ratio of the image intensifier: G_R $G_R = G_{1000}/G_{SET}$ by Gain curve of the Image Intensifier G_{1000} : Gain at MCP1000V (Maximum) G_{SET} : Gain at MCP set voltage at Measurement Yields ratio Fluorescence/OTR: Y_R

Scaling for Unified Profile (2)

Y_R: Yields ratio between Fluorescence/OTR

- Motivation
- Concept
- J-PARC and 3-50 Beam Transport Line
- OTR by Low γ : 3GeV Proton Beam
- Large Acceptance Optics & Detector
- Scaling for Unified Profile
- Combination Measurement with OTR and Fluorescence
- Simultaneous measurement of beam core and beam halo
- Conclusions

Effect of the beam cut by 3-50 BT collimator (1)

Halo Measurement by 25 times Changing Position of Alumina Screen Gain of II : optimized in each step Superimposed Image (5 times averaged each) Beam Condition :Intensity 1.5e13 p/bunch, 50 π painting at RCS Injection

Effect of the beam cut by 3-50 BT collimator (2)

Two-Dimensional Halo Distribution

Dynamic Range of Light Intensity: 4 to 5 order obtained. Halo Island at Minus fourth order disappeared by Collimator ON Left and Right Halo distribution has asymmetry.

Effect of the beam cut by 3-50 BT collimator (3)

Horizontal Projection

Dynamic Range :More than six order obtained Beam Size: More than 120 mm at 10⁻⁶ order

Collimator-ON Waist appears at 10⁻⁴ Expansion at 10⁻⁶ Effect of the beam cut by 3-50 BT collimator (4)

Vertical

No Significant Difference

OTR/FLUORESCENCE BEAM PROFILE MONITOR

- Motivation
- Concept
- J-PARC and 3-50 Beam Transport Line
- OTR by Low γ : 3GeV Proton Beam
- Large Acceptance Optics & Detector
- Scaling for Unified Profile
- Combination Measurement with OTR and Fluorescence
- Simultaneous measurement of beam core and beam halo
- Conclusions

Simultaneous Measurement of Beam Core and Beam Halo (1) Alumina Edge Position : Halo of 10⁻⁴ order

Difference by Painting Area of RCS Injection of 100 π and 50 π [mm.mrad]

Beam Intensity: 2.99e13/2bunch 5 times averaged

OTR/FLUORESCENCE BEAM PROFILE MONITOR

50 π Painting

- Smaller Beam Size
- Halo Rotation

Simultaneous measurement of beam core and beam halo (2) : as possible as seamlessly (Next step)

Light Yield Ratio : Fluorescence /OTR \rightarrow 1000

Exposure (I.I. Gate)

- Motivation
- Concept
- J-PARC and 3-50 Beam Transport Line
- OTR by Low γ : 3GeV Proton Beam
- Large Acceptance Optics & Detector
- Scaling for Unified Profile
- Combination Measurement with OTR and Fluorescence
- Simultaneous measurement of beam core and beam halo
- Conclusions

- 1. By using combination measurement of the OTR from the titanium foil screen and the fluorescence from the alumina screen, we developed two-dimensional and high dynamic-range profile monitor.
- 2. On the projection profiles, we obtained the beam profile of the core and the halo with around six-orders dynamicrange.
- 3. It was shown that the beam asymmetry or the rotation were measured with this instrument as advantage of a two-dimension.
- 4. These results greatly benefit to investigation of beam dynamics.

Thank you very much for your attention !