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 Late 90s – Next generation nuclear facility (RIA) proposed

 Dec. 2003 – CD-0 released (mission need)

 Dec. 2008 – MSU site selected  

 June 2009 – Cooperative Agreement signed by DOE-SC and MSU

 Sept. 2010 – CD-1 approved (preliminary baseline range)

 Aug. 2013 – CD-2 approved (performance baseline), CD-3a approved (start 
civil construction pending FY14 federal appropriation)

 Mar. 2014 – Civil construction started

 Aug. 2014 – CD-3b approved (start technical construction)

 Oct. 2014 – Technical construction started

 June 2022 – CD-4 (project completion), early completion goal in Dec. 2020 

 ……

Introduction – FRIB Timeline
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Introduction – FRIB Layout
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Introduction – FRIB Layout
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 400 kW CW machine with uncontrolled beam loss limited to < 1 W/m 

Meet beam-on-target requirements (e.g. energy ≥ 200 MeV/u)

Accelerate all varieties of stable ions  Uranium is most challenging in 
design (two & five charge states before and after stripper, respectively) 

Minimize project construction costs  Compact double-folded layout

Maintain potential enhancement  Energy upgrade, ISOL targets, light 
ion injector

FRIB Beam Dynamics Design Requirements
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Why heavy ions need multi-charge simultaneous acceleration
• Meet intensity requirement and increase output efficiency

Ch. Schmelzer, “Special Problem in Heavy Ion Acceleration” of “Part D 
Heavy Ion Linear Accelerator” in “Linear Accelerator” edited by P.M. 
Lapostolle and A. L. Septier, 1970
• The simultaneous acceleration of U23+ to U27+ increases the stripper yield 

from 15% for single charge state to more than 60% in the UNILAC

H. Deitinghoff, “Calculations on the Possibility of the Simultaneous 
Acceleration of Ions with Different Charge States in a RFQ”, PAC95, 
1995

P.N. Ostroumov, et al., “Multiple-charge Beam Dynamics in an Ion 
Linac”, “Multiple Charge State Beam Acceleration at ATLAS”, 
LINAC00, 2000

RIA  FRIB

Multi-Charge-State Simultaneous Acceleration
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 Lattice with large acceptance
• Accommodate mismatch and offset among the charge states 

Manipulation of phase space 
• Prebuncher, velocity equalizer and HV platform scheme at LEBT

Achromatic and isochronous bending optics design
• Reduce emittance growth in both transverse and longitudinal planes

Superimposition of multi-charge states at critical locations
• Minimize emittance growth on charge stripper

• Achieve small beam size on target

FRIB Beam Dynamics Challenges for Multi-Charge-State  
Simultaneous Acceleration and Transport
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Longitudinal Motion of Multiple Charge States
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 Longitudinal motion could be highly nonlinear

 Longitudinal acceptance of LS2
• 80+ is about 25% larger than 78+

• 76+ is about 30% smaller than 78+

Errors will decrease acceptance 

while increase input emittance

Large Ratio Acceptance/Emittance Required
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 Large longitudinal acceptance
• Supports multi-charge state acceleration

• Reduces beam loss initiated from longitudinal motion

 Large acceptance to emittance ratios: 

20: 1 25 : 1       30 : 1

FRIB Linac Longitudinal Acceptance 
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Realistic initial particles generated based on measurements at VENUS
• Two charge-states uranium beam

Front End Lattice Configuration
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External bunching and energy equalizing for two-charge-state beams 
reduce longitudinal beam emittance
• Acceleration/deceleration cavity VE: accelerate lower charge state beam and 

decelerate higher one (same bunch energy into RFQ)

• HV section between MHB and VE: adjust relative time flight difference 
between the two charge-state beams

• U33+, U34+ in every other rf bucket

Longitudinal Phase Space Manipulation in FE
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 3 β=0.041 QWR cryomodules
• 4 cavities

» f = 80.5 MHz

» Va = 0.81 MV (2 gaps)

» a = 36 mm

• 2 solenoids (each attached a BPM)
» Bo = 8 T

» L ~ 25 cm

• Output energy: ~1.5 MeV/u

 11 β=0.085 QWR cryomodules
• 8 cavities

» f = 80.5 MHz

» Va = 1.78 MV (2 gaps)

» a = 36 mm

• 3 solenoids (each attached a BPM)
» Bo = 8 T

» L ~ 50 cm

• Output energy: up to 20 MeV/u

Linac Segment 1 Lattice
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 Two charge states (U33+ & U34+) reasonably overlapped
• Very similar transverse dynamics 

Transverse Beam Size and Emittance along LS1
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 Longitudinal oscillation of two-charge-state beam along Segment 1

Phase of cavities are adjusted for the overlap of the two-charge-state 
beam at the exit of Segment 1 by measuring the timing of each charge 
state beam

Longitudinal Overlap of 2q Beam at LS1 Exit
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Charge Stripper and Selection in FS1
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U33+ and U34+ at the input of stripper
• Small beam size and short bunch length achieved

Multi-charge state distribution at the output of stripper
• 85% beam in 5 charge states (from U76+ to U80+)

Uranium Beam Distributions at Li Stripper
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 12 β=0.29 HWR cryomodules
• 6 cavities

» f = 322 MHz

» Va = 2.09 MV (2 gaps)

» a = 40 mm

• 1 solenoid
» Bo = 8 T

» L ~ 50 cm

• Output energy: ~55 MeV/u

 12 β=0.53 HWR cryomodules
• 8 cavities

» f = 322 MHz

» Va = 3.7 MV (2 gaps)

» a = 40 mm

• 1 solenoids
» Bo = 8 T

» L ~ 50 cm

• Output energy: > 150 MeV/u

Linac Segment 2 Lattice
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Relatively small mismatch among U76+, U78+ and U80+ in Segment 2
• Beam size not increase too much even with 5 charge states  (U76+ – U80+)
• The increased bunch length variation due to the transition from =0.29 to 
=0.53 cryomodule (no special matching taken)

Beam Size and Bunch Length along LS2
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 6 β=0.54 HWR cryomodules
• 8 cavities

» f = 322 MHz

» Va = 3.7 MV (2 gaps)

» a = 40 mm

• 1 solenoids
» Bo = 8 T

» L ~ 50 cm

• Output energy: > 200 MeV/u

Quadrupole FODO lattice Space for upgrade
• Space for future upgrade

• 12 β=0.54 HWR cryomodules
» Output energy: > 300 MeV/u

Linac Segment 3 Lattice
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 Initial offset 1 mm for each charge state (can be measured by BPM)

 LS1 with solenoid focusing and cavity acceleration/defocusing
• The difference between U33+ and U34+ developed but up to ~1 mm

Quadrupole FODO lattice in LS3
• All 5 charge states follow the same pattern 

• Maximum difference ~1 mm

Orbit Kick Response for Different Charges
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Satisfy the beam-on-target requirements for the most challenging 
multi-charge state uranium beam

Five-charge-state Uranium Beam on Target
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Parameter Required Achieved Meet

Beam spot size (1 mm) ≥ 90% 96% 

Angular spread (±5 mrad) ≥ 90% 100% 

Bunch Length (3 ns) ≥ 95% 100% 

Energy spread (± 0.5%) ≥ 95% 100% 



Detailed tuning procedures of multi-charge beam being developed
• Cavity phase setup and scaling 

• Transverse and longitudinal matching

Element Failure Being Systematically Studied
• Single cavity failure

• Single magnet miss-power

• Cavity gradient degradation

• Cavity gradient variation

• Cryomodule failure (both cavity and solenoid)

• Stripper degradation

Virtual accelerator and online modeling

Examples of Other Studies Being Performed
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 FRIB linac baseline lattice has been developed
• Satisfy with baseline requirements

• Support the start of civil and technical construction

• Consistent with future upgrades

Simultaneous acceleration of multi-charge-state beam is most 
challenge in FRIB linac beam dynamics
• Lattice with large acceptance

• Manipulation of phase space 

• higher order achromat bending transport 

Accelerator physics group continues actively working with other groups  
to further develop strategies and algorithms for machine 
commissioning
• Beam tuning

• Virtual and online accelerator

Summary
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Beam element placement errors

Cavity RF errors (measured rf errors at MSU are much smaller)

BPM uncertainty with respect to focusing element
•±0.4 mm, uniform distribution

Stripper thickness variation 
•±20%, uniform distribution

Nominal Machine Errors Used in Beam Simulations
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Name Value Distribution

Cold element displacement ±1 mm Uniform 

Warm element displacement ±0.4 mm Uniform

Warm element rotation ±2 mrad Uniform

Name Value Distribution

RF amplitude fluctuation ±1.5% Gaussian (σ=0.5%)

RF phase fluctuation ±1.5° Gaussian (σ =0.5°)



Beam envelope growth (within aperture) mainly due to misalignment 
• Steering correctors turned on

RF errors cause significant longitudinal emittance growth but not 
coupled into transverse 

No uncontrolled beam losses observed

Beam Evaluation Results with Machine Errors 
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Longitudinal Phase Space Manipulation in FE
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