

TRANSVERSE EMITTANCE PRESERVATION STUDIES FOR THE CERN PS BOOSTER UPGRADE

E. Benedetto,

C. Bracco, B. Mikulec, V. Raginel, G. Rumolo, CERN, Geneva, Switzerland,

V. Forte, CERN and Université Blaise Pascal, FR

Acknowledgements: J. Abelleira, C. Carli, G. P. Di Giovanni, R. Garoby, M. Kowalska, A. Lombardi, M.J. Mcateer, M. Meddahi, F. Schmidt and many other LIU colleagues

Circumference:	157m
Super-periodiciy:	16
Injection:	Multi-Turn p+ → H
Injection energy:	50 MeV → 160 Me
Extraction energy:	1.4 GeV → 2 GeV
Cycle length:	1.2s
# bunches:	1 x 4 Rings
RF cavities:	h=1+2, h=16
Tunes at injection:	~ 4.3, 4.5, 1e-3
Rev. freq. (160 MeV): 1MHz	
# protons/bunch:	1e11 to 1e13
H. emittance:	1 to 15 um
V. emittance:	1 to 9 um
L. emittance:	0.8 to 1.8 eVs

Space Charge $\Delta Q > 0.5$ @ inj

PSB	
AD	
CNGS	
EASTA	
EASTB	
EASTC	
LHCINDIV	
LHCPROBE	
LHC 100ns SB	
LHC 25ns DB A	
LHC 25ns DB B	
LHC 25ns H9 A & B	
LHC 50ns DB A & B	
LHC 50ns SB	
LHC 75ns SB	
MTE	
NORMGPS-HRS	
SFTPRO	
STAGISO 1.4Gev	
STAGISO 1Gev	
TOF	

PSB is the first ring in the LHC p+ chain ...where transverse emittance is defined

For LHC beams: emittance preservation (vs. losses)

Outline:

- Measurements Emittance vs. Intensity curve
- Space-Charge Simulations (△Q > 0.5)
- Blow-up during the H- injection process
- Conclusions

Lot of work behind: code benchmark, simulations of operational beams, studies of best injection (transverse & longitudinal), machine model with new hardware

Emittance vs. Intensity curve

Emittance vs. Intensity curve

- Emittance is preserved along acceleration
- Low energy points not understood (scattering at the wire scanners, calibration, uncertainties in dp/p,...)

Scaling for Linac4 (160 MeV)

- Emittance vs. intensity determined by space-charge (and multi-turn injection process)
- Increase in injection energy: 50 to 160 MeV
 - $(\beta \gamma^2)^{160 \text{MeV}} / (\beta \gamma^2)^{50 \text{MeV}} = 2.04$
 - Keeping the same Space-Charge $\Delta \mathbf{Q}$ means:
 - Increase of intensity by x2
 - OR Reduction of emittaces by x2
- The slope of the emittance vs. intensity curve should scale by x1/2*

Space-Charge simulations (PTC-Orbit)

- Transversely MATCHED distribution (Gaussian) (*)
 - With a given emittance
 - Scan on the Intensity
- Let it evolve for ~7ms, during fall of the chicane bump
- Quadrupolar errors at the chicane magnets + Eddy currents + Compensation QDE3, QDE14 (time varying)
 - Beta-beating (mostly in vertical) corrected
 - Excitation of half-integer corrected
 - Excitation of the integer line

(*) In longitudinal (for the time being): I let a "rectangular" distribution evolve in an accelerating bucket, h1+h2. NOT YET optimized...

ш

ш

Space-Charge simulations (PTC-Orbit)

 Emittance reached at the end of the chicane bump is ~"independent" of the starting value

- 200 SC nodes
- 2.5 Direct SC module
- 128x128x128
- 250k macroparticles

Initial and final longitudinal distribution

Space-Charge simulations (PTC-Orbit)

- H and V Tune spread
- Initial ΔQx extending below the integer \rightarrow blow-up

Simulations with PTC-Orbit

- On a straight line & depends on longitudinal emittance
 - BUT: the slope for 1.20eVs is a factor 25% lower

Blow-up during injection process

- Multipole Coulomb Scattering
- Injection mismatch
- Ripples or jtters

Blow-up during injection process

Target (BCMS): 165e10 protons , emittance $\leq 1 \mu m$

No longitudinal nor transverse painting

Ideally matched optics

7 turns injected (40 mA from Linac4, in 0.4 $\mu m)$

Conclusions: Emittance preservation in the CERN PSB

- LHC beams: 165 e10 in $2\mu m$ (will be 350 e10 with the Upgrade)
- Emittance vs. intensity measurements:
 - Points on a straight line + no blow-up during acceleration
 - Emittance defined by injection process + space-charge (ΔQ >0.5)
- Brightness curve scales by 2 (same ΔQ) @ 160 MeV
 - Simulations agree qualitatively:
 - Straight line, dependence on longitudinal emittance
 - 25% difference in slope: Missing something? Uncertainties in longitudinal distributions? Scaling is rough?
 - Blow-up during H- injection should not prevent 1µm emittances:
 - Foil scattering (<20 turns injection), mismatch, offsets, ripples
- Next: benchmark with measurements will continue, optimization
 H- injection parameters and scan of different tunes.