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Introduction and motivations

 The HL-LHC project at CERN requires an increase of intensity, but
intensity requirements cannot be fulfilled for the moment in the SPS, one
of the reason being longitudinal instabilities.

A detailed impedance model is under development in order to simulate
intensity effects and identify the source of the instabilities.

1 This model was tested against sets of measurements to proof its
accuracy. .



Quadrupole frequency shift

J Bunch length oscillations (quadrupolar m = 2) at injection in
the SPS(§26 GeV/c, above transition) are measured and
analyzed in order to measure the synchrotron frequency shift
as a function of intensity.

[ This shift is due to the convolution of the reactive part of the
impedance and the bunch spectrum, and is divided in two
contributions : the incoherent frequency shift (from the
stationary bunch distribution) and the coherent frequency
shift (from the perturbation) [1]

f:g,m(Nb) ~ m ﬁ;(O) +m Afinc(Nb) T Afcoh(m: Nb)

( Measurements and simulations were compared in order to
test the current SPS impedance model, and a dependence on
emittance (~ bunch length) and distribution type was
observed and analyzed.



Measurement method

(1 A mismatch bunch is injected in the SPS and its quadrupole
oscillations are measured and analyzed

Measured bunch length oscillations Quadrupole frequency shift - Q26
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U Bunch length is defined as T = 405

3 Scanning intensities (1 - 10*° to 8 - 101%) and emittances
(0.1eVs to 0.2 eVs) :



Measurement results — Q26

Measurement results
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1 Each point in simulations corresponds to the slope of
the quadrupole frequency shift as a function of intensity,
for bunches of the same bunch length.
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Impedance Z/n [Ohms]

Impedance model
J Actual SPS impedance model [2]

Main reactive impedance
' (SIZ/(t/5)]):
J' [ Kickers (inductive, 5.5()

J Vacuum flanges
(inductive, 0.5())

J RF systems (capacitive)

Reactive Impedance of the SPS

J Space charge
_20! | (capacitive, -1.0Q)) [3]
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Simulation method

] Using BLonD simulation code [4]
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21"
A(t) = A [1 — (;) ] ; n = 1: Parabolic line density

 The bunch length T, the intensity and the momentum
spread are scanned, in order to cover the full panel including
measurements

8



Slopes [1e-10 Hz/N]

Slopes [1e-10 Hz/N]

Simulation results — Q26
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(J A non monotonous
dependence of the slope as a
function of bunch length is
observed in simulations

1 The error bars in simulations
corresponds to the range due
to the different momentum
spreads

J The maximum is reduced by
increasing n in the binomial
distribution.

 The simulations give a good
agreement with
measurements.



Slopes [1e-10 Hz/N]

Measurement results — Extended
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J Two different
optics: Q26 and Q20
(slopes were scaled
to Q26 — 0.9MV in
order to be
compared on the
same plot).

J The Q20
measurements
reveals the
maximum around
T = 1.7ns.
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Simulation results — Q20
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(J The same properties were seen with simulations and
measurements with the Q20 optics.
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Incoherent frequency shift

(J Numerical computation of the incoherent frequency shift [5]

 This shift is due to the stationary spectrum of the bunch

fs(o) : synchrotron frequency

Z, : effective impedance
0y : stationary bunch spectrum

7 : single particle oscillations
amplitude

dAbove transition, @ < 0, so inductive impedance give Z; > 0 so
the slope is steeper (vice-versa for capacitive impedance)
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Coherent frequency shift

1 Coherent frequency shift was estimated for the quadrupolar case
and has a non negligible effect on the slope [6].
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J The coherent shift goes in the opposite direction than the
incoherent shift (capacitive impedance leads to a steeper slope and
vice-versa), and is due to the perturbation on the bunch
distribution with respect to the stationary bunch distribution.

J Note that analytical formulas are valid for small perturbations from
stationary case, but large deviations exist in measurements.
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1 The impedance type (inductive vs. capactive) changes
as a function of bunch length for the flanges due to the
negative lobe of the parabolic spectrum, turning
inductive impedance into effective capacitive
impedance. 14



Effective impedance
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 The effective impedances have a dependence on bunch
length, due to the flanges for Z; (incoherent), and due to
the RF systems and the kickers for Z, (coherent)
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Analytical results — Slope

1.0 Slopes (quadrupole frequency shift)
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d The slope is computed with incoherent and coherent
shift.

J The parabolic distribution is sampling inductive or
capacitive depending on the bunch length .



Conclusions
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U The incoherent quadrupole frequency shift has a dependence on bunch length
due to the coupling with high frequency impedances (flanges), while the
coherent shift dependence is due to the RF systems and the kickers.

( More measurements are foreseen by generating a small mismatch by increasing
the RF voltage in the SPS, in order to have smaller perturbations.

J Measurements at higher energies are planed in order to eliminate the space
charge impedance.

O Information on the synchrotron frequency shift are needed in order to apply
emittance blow-up with RF noise. The dependency with bunch length is to be
known in order to apply correctly the RF noise.
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