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Introduction

1 Microwave instability observed in the proton machines as a fast
increase of the bunch length (longitudinal emittance)

1 Microwave (pw) instability observed in the CERN SPS in the past 2
main source the resonant (Q~50) impedance of the pumping ports
(~1000) - shielding them improved the beam stability

U Today:
= SPSinjector of the LHC

= QOperation with double RF in bunch shortening mode (BSM):
200 MHz + 800 MHz

d Recently uncontrolled emittance blow-up observed in the SPS at
high intensities—=> one of the main limitations for the intensity
increase required by the HL-LHC project (~2.5x10'! p/b)



Uncontrolled emittance blow-up (1/2)

O Measurements of high intensity single bunch at the SPS flat top (450 GeV/c)
 Double RF systems (200 MHz + 800 MHz) in BSM with Vg, = V,0,/10
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Bunch lengthening can not be explained by potential well distortion with the SPS
impedance model (ImZ/n ~ 3.5 Q but ImZ/n >15 Q is needed) 2> blow-up during
ramp




Uncontrolled emittance blow-up (2/2)

 Single bunch with high intensity in double RF system (Vgy, = V,40/10)

(J 200 MHz RF voltage calculated for constant bucket area 0.5 eVs (~0.6 eVs
in normal operation) = larger filling factor during cycle > more Landau
damping

Measurements in 2014 in Double RF BSM
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Impedance identification

Example at N, = 1.0x10% p

L Beam measurements at injection energy (26

T 015 GeV/c) with long bunches (t~25 ns) and RF off
E; 01 d Small momentum spread = more unstable and
"g slow debunching
E0.0S—
- O Line density modulated at 200 MHz and a higher

0 . | | . frequency (1.4 GHz)
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uw instability due to a resonator

(d Microwave instability threshold in a single RF system:

< broad-band impedance: f, T > Q = Ny, (%)
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 Particle simulations carried out to confirm this analytical predictions using
the code BLonD (longitudinal beam dynamics code developed at CERN)

resonator impedance: f, = 1.4 GHz, R/Q=10 kQ

Criterion for Instability threshold: 7, /7; > 5 % or Aty > 100 ps
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Simulations — single RF

 Simulations at SPS flat top (450 GeV/c) with V,,, =2 MV
O Scanning Q but keeping R/Q constant

Instability threshold from simulations in a single RF
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Simulations — double RF (1/2)

Second harmonic RF system: h,/h;, =2 and V,/V,=2
Simulations at SPS flat top (450 GeV/c) with V,,, =2 MV

Similar dependence with R/Q
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O Double RF in BSM has the highest threshold and double RF in BLM the lowest =
Dependence on the Ap/p




Simulations — double RF (2/2)

d Fourth harmonic RF system: h,/h, = 4 (SPS today)
d Simulations at SPS flat top (450 GeV/c) with V,,, =2 MV
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Simulations — double RF (2/2)

d Fourth harmonic RF system: h,/h, = 4 (SPS today)
d Simulations at SPS flat top (450 GeV/c) with V,,, =2 MV
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Longitudinal instability in the SPS

d Macroparticle simulations at the SPS flat top (450 GeV/c) using the full SPS
impedance model: RF cavities, resistive wall, injection and extraction kickers,
Beam Position Monitors (BPMs), vacuum flanges etc.

[ Distribution function: F(H) = (1 — Hi)2 -> from measurements
0

Double RF V,,, =2 MV = Vg, = 0.2 MV — N=1.47x10 p
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Longitudinal instability in the SPS
single bunch

Double RF V,;0 =2 MV = Vg,, = 0.2 MV
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0 Good agreement between
measurements and simulations

O From measurements in 2014:
Nth ~ 2.5x1011 P
(more points are needed)

O From particle simulations with
g =~ 0.35 eVs (maximum single
particle trajectory):

N;, = 2.5x10' p

O Measurement in 2012
correspond to higher initial
g = 0.45 eVs (from simulations)
but points at lower intensity are
missing

O In simulation: Ny, = 2.0x10! p




Longitudinal instability in the SPS
single bunch

O Increasing the RF voltage in both RF systems => larger Ap/p - larger
increase the instability threshold 2 pw type of instability
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Longitudinal instability in the SPS
single bunch

O Increasing the RF voltage in both RF systems => larger Ap/p - larger
increase the instability threshold 2 pw type of instability
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Longitudinal instability in the SPS
single bunch

O Increasing the RF voltage in both RF systems => larger Ap/p - larger
increase the instability threshold 2 pw type of instability
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Longitudinal instability in the SPS
multi-bunch

Simulations for 6 bunches (25 ns spacing) at SPS flat top

Intensity threshold as a function of bunch length for 1 & 6 bunches

Double RF V,, =7 MV = Vg, = 0.7 MV QEJalltatlve agreement of simulations
: . . : , , with measurements:
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Longitudinal instability in the SPS
multi-bunch

Simulations for 6 bunches (25 ns spacing) at SPS flat top

Intensity threshold as a function of bunch length for 1 & 6 bunches

Double RF V,g, = 7 MV = Vo, = 0.7 MV
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Qualitative agreement of simulations
with measurements:

» N,, of 6 bunches is ~ twice lower than

Preliminary results show that N, increases by a factor of 2 without the |
impedance of vacuum flanges (single and multi bunch) = impedance
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spaced bunches are coupled, but
batches spaced by 225 ns are
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Summary

Uncontrolled emittance blow-up is observed in the SPS = limitation for the HL-
LHC intensity requirements

Beam measurements identified a strong resonant peak at 1.4 GHz

Macroparticle simulations for this type of resonators show that instability
scales with R/Q (as expected from theory in single RF)

Double RF vs single RF
» h,/h, = 2: higher N,, in BSM and lower in BLM (as expected from Ap/p)
> h,/h, =4:lower N, in BSM above a certain emittance

Simulations with the current SPS longitudinal impedance model confirmed the
uncontrolled blow-up = SPS vacuum flanges the responsible impedance

source

Measures of reducing this impedance are under consideration
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