Beam halo control study on the ADS superconducting linac design at IHEP

Fang Yan, Shilun Pei, Huiping Geng, Cai Meng Zhili Li, Jingyu Tang ADS Injector I Beam Dynamics Group Institute of High Energy Physics Nov. 13, 2014 11:40 Fang Yan, Nov. 13, 2014, HB2014, MSU

- **1. Introduction**
- 2. Lattice design of the Injector-I test facility
- 3. Beam dynamics
- 4. Error analysis
- 5. New injector-I design with better acceptance6. Summary

Schematic of ADS driver linac:

Fang Yan, Nov. 13, 2014, HB2014, MSU

1. Introduction

Schematic of ADS driver linac:

Beam loss limit of the China-ADS Driver linac:

Max. beam power: 15MW, to fulfill the 1W/m requirement, the beam loss rate has to be controlled down to 7×10^{-8} /m.

Particles	proton
Energy (GeV)	1.5
Beam current(mA)	10
Beam power(MW)	15
Duty factor(%)	100
Beam loss (W/m)	<1

Fang Yan, Nov. 12, 2014, HB2014, MSU

1. Introduction

- The Injector-I testing facility is being built in IHEP.
- It is composed of: ECR ion source, LEBT, RT RFQ, MEBT line and a superconducting section.
- The beam dump line is used for transporting the proton beam out of the SC segment to the beam dump.
 - The front end from source to RFQ has been installed in the IHEP campus, and 90% beam duty factor has been achieved with 90% transmission out of RFQ.

Spoke012 cavity gradients 8 7 6 5 4 5 6 5 4 5 6 7 8 9 10 11 12 13 14 15 16 Cavity lessign specification Cavity lessign specification Cavity number

Vcav0=0.8MV, TTF=0.76, Eacc0=5.53 MV/m.

- The maximum Spoke012 cavity voltage and gradient used in the nominal dynamics simulation are Vcav=1.1×Vcav0=1.1×0.8MV=0.88MV/m and Eacc=1.1×Eacc0=1.1×5.53MV/m=6.08 MV/m, respectively.
- **The achieved gradient 6.5MV/m by the Spoke012** cavity prototype test can satisfy dynamics requirement.

Spoke012 cavity prototype test Vertical test 2012.12.24

Z (m)

Avoiding the longitudinal parametric resonances

$$k_{mm}L = \pi$$

$$\int_{l_{0}} When filling factor is considered$$

$$\int_{l_{0}} \frac{1}{2\pi L} = \pi/L/\sqrt{1+3\eta_{l}^{2}}$$

$$\varepsilon = \frac{\sigma_{l_{0}}}{2} \frac{\sin(\pi l_{eff}/L)}{\pi l_{eff}/L}$$

$$\int_{l_{0}} \eta_{l} = 0.67$$

$$\sigma_{l_{0}} = 118^{\circ}$$

$$\sigma_{l_{0}} = 92.9^{\circ} !!$$

Avoiding the transverse and longitudinal coupling

1. The linac is designed with fixed phase advance ratio to fulfill the equipartioning condition and give a current free design:

$$\frac{k_{t0}}{k_{l0}} = \left(\frac{3\varepsilon_{nl}}{2\varepsilon_{nx}} - \frac{1}{2}\right)^{1/2}$$

2. The longitudinal emittance out of RFQ is designed to be smaller than transverse to give maximum longitudinal acceleration;

3. The working points are distributed around the equipatition line and between the $k_i / k_t = 1$ and $k_i / k_t = 2$ stop bands.

Avoiding the transverse structure resonances

- $\sigma_l < 60^\circ$
- To avoid the 2nd / 4th
 resonances:
 - $2\sigma_t \text{ or } 4\sigma_t < 180 \text{ or } 360$
- ✓ 3rd order of structure resonances:

 $3\sigma_t < 180$

Acceptance

- Transverse acceptance: 7.8 times (aperture/ rms beam size)
- The absolute value of synchronous phase is bigger than 6 times of the rms phase width. The longitudinal acceptance is 6.3 times*.

* The acceptance is calculated over the entrance emittance including 95.4% particles (Gaussian distribution)

3. Beam dynamics: conditions

TraceWin program is used for beam dynamics and error analysis;

Using RFQ simulated output:

- Simulated with Parmteq.
- 6d waterbag input with 100000 macro particles for the RFQ entrance.
- Normalized rms emittance in x and y: 0.198 π .mm.mrad /0.199 π .mm.mrad.
- Normalized rms emittance in z: 0.159 π .mm.mrad (i.e. ,0.058 π .deg.MeV).
- **Integrated with MEBT;**
- **3d** cavity and solenoid fields are used in the multi-particle simulations;
- 1000 seeds are generated randomly for the error analysis of each scenario. 14

3. Beam dynamics:

RMS envelope evolution

Output beam energy: 10MeVIntegrated with MEBT:

15

3. Beam dynamics:

Normalized RMS emittance evolution

RFQ exit @3.2MeV

SC section exit with MEBT @ 10MeV

Misalignment & RF error settings in beam dynamics

	Error amplitude						
Error type		Buncher / Cavity		Q / <mark>Solenoid</mark>		B magnet	
		Static	Dynamic	Static	Dynamic	Static	Dynamic
Displacement	δx (mm)	0.1/1	0.002/0.01	0.1(1)	0.002/0.01	0.5	0.005
	δy (mm)	0.1 / <mark>1</mark>	0.002/0.01	0.1 / <mark>1</mark>	0.002/0.01	0.5	0.005
	Rx (mrad)	2	0.02	2	0.02	2	0.02
Rotation	Ry (mrad)	2	0.02	2	0.02	2	0.02
	Rz (mrad)			2	0.02	2	0.02
Gradient	δg (%)	0.5	0.25	0.5	0.05	0.1	0.05
RF phase	δφ (°)	0.5	0.25				
Longitudinal displacement	δg (mm)	0	0	0	0	0	0

The BPM uncertainty is assumed to be 0.4mm.

All errors are uniformly distributed between the +/- maximum values.

4. Error analysis

Injector-I SC section

- Error analysis with nominal RF errors and misalignments
- With doubled nominal RF errors and misalignments.
- Error analysis with input beam 50% emittance deviation.
- Error analysis with input beam 100% emittance deviation.

4. Error analysis

Input beam mismatches

	Nominal	Transve	rse (%)	Longitudinal (%)		
Input beam mismatch	0	150	200	5	10	15
Loss(%)	0	0	0.0014	0	0	8e-6
x emittance growth (%)	5.6	95.9	137	5.9	6.1	6.4
y emittamce growth (%)	5.2	144.8	219.8	5.0	5.1	5.1
z emittance growth (%)	9.4	45.5	44.3	11.1	14.1	27.2

Spoke012 vertical test results@20141023

Max. Eacc of 14.1MV/m (Bpeak=90.2mT, Epeak=63.5MV/m) @Q0=3.0e8

> The acceptance mainly decided by the acceptance of the first CM and the first cavity sync. phase of the second CM!!

* The acceptance is calculated over the entrance emittance included 95.4% particles (Gaussian distribution)

Longitudinal mismatch of the new design

Transverse & longitudinal envelope evolution

SC section exit @10 MeV

Normalized rms emittance

- To control the possible beam halo growth in the Injector-I SC section, several aspects are considered to get a stable design:
- Avoiding the longitudinal parametric resonances
- Avoiding the transverse structure resonances
- Avoiding the transverse and longitudinal coupling
- And design with bigger longitudinal acceptance can improve the sensitivity of the basic design.

