HB2014

East Lansing, MI 10-14 November 2014

54th ICFA Advanced Beam Dynamics

Workshop on High-Intensity, High Brightness and High Power Hadron Beams

Beam dynamics design and experiments of CPHS linac

Lei Du

Dept. of Engineering Physics, Tsinghua University, Beijing

OUTLINE

Introduction

- Beam dynamics
 ---ECR source and LEBT
 ---RFQ
 ---DTL
 ---HEBT
 ---End to end simulation
- Experiments
- Summary

Introduction

CPHS (Compact Pulsed Hadron Source) project

- Launched in June 2009
- Four neutron beam lines planned
- Target station: Beryllium
- Expected neutron flux: $\sim 5*10^{13}$ n/s
- Neutron beam test line and neutron imaging beam line constructed

ICFA HB2014 workshop, Nov. 10~14, East Lansing

Operation status – CPHS milestones

- RFQ conditioned to 550kW/50Hz/40µs on 2013/02
- First beam of RFQ on 2013/03/25
- Highest transmission of RFQ (88%, input 50mA, output 44mA) on 2013/03/27
- First neutron beam on 2013/07/18 (mid-term objective achieved)
- First neutron imaging on 2013/07/26
- Highest transmission of HEBT (> 90%) on 2013/08/13
- RFQ conditioned to $442 \text{kW}/50 \text{Hz}/500 \mu \text{s}$ on 2014/04

CPHS linac – present status

Proton linac parameters

Ion type	Proton	
Beam energy	3	MeV
Peak current	40	mA
Pulse length	100	μs
Pulse repetition rate	20	Hz
RF frequency	325	MHz

ICFA HB2014 workshop, Nov. 10~14, East Lansing

CPHS

Beam dynamics

• ECR source and LEBT

ECR source

Four-electrode extraction

LEBT

- Two glaser lens each with two steering magnets inside
- One cone structure before RFQ (the cone, ACCT and electronic trap)
- Space charge neutralization rate ~ 97%

Design and simulation

PBGUNS for ECR source extraction and LEBT

TRACK for LEBT

Designed parameters for the ECR source and LEBT

Output energy	50	keV
Output current	60	mA
Microwave frequency	2.45	GHz
Microwave average power	1.5~2.0	kW
Normalized RMS emittance	0.2	π mm·mrad
Reliability	120	hour

Required Twiss parameters at the entrance of RFQ

α	1.35	
β	7.73	cm/rad

ECR source

CPHS

ICFA HB2014 workshop, Nov. 10~14, East Lansing

LEBT

CPUS

LEBT simulation by Track code

ICFA HB2014 workshop, Nov. 10~14, East Lansing

, East Lansing

11

Beam dynamics

• RFQ

Configuration

Shorter length: coupling plates are not necessary

Optimization design of the peak field and the multipole field: vane-tip geometry are tailored as a function of longitudinal position

No MEBT

CPHS

Design and simulation

PARMTEQM

Simulation checked by TOUTATIS and TRACK

Z (cm)

RFQ parameters

Parameters	Value	Unit
Туре	Four-vane	
Frequency	325	MHz
Input beam energy	50	keV
Output beam energy	3.0	MeV
Peak beam current	50	mA
Emittance (norm. rms)	0.2	π mm· mrad
RF peak power	537	kW
Beam duty factor	2.5	%
Section number	3	

CPHS

Matching between RFQ & DTL

Focusing in RFQ (left) and DTL (right) zero-current phase shift

CPHS

Matching between RFQ & DTL

Trace3D used first 4 quads in DTL to match beam from RFQ to DTL

ICFA HB2014 workshop, Nov. 10~14, East Lansing

Beam transmission given by PARMTEQM

CPHS

Particle distribution in the transverse plane x-y at the entrance (top) and exit (bottom) of the RFQ

RFQ simulation

CPUS

	PARMTEQM	TOUTATIS	TRACK	unit
Macroparticle number		10 ⁵		
Input emittance	0.2			π mm*mrad
Input current		60		mA
Input Trans. α_i	1.35 (x) 1.35 (y)			
Input Trans. β_{i}	7.73 (x) 7.73 (y)			cm/rad
Output RMS emittance (Trans. Norm.)	0.246 (x) 0.248 (y)	0.258 (x) 0.263 (y)	0.259 (x) 0.262 (y)	π mm*mrad
Output Trans. α_{o}	-2.27 (x) 2.06(y)	-2.19 (x) 2.11(y)	-1.32 (x) 0.53(y)	
Output Trans. β_{o}	35.2 (x) 36.3 (y)	31.1 (x) 33.0 (y)	48.8 (x) 21.6 (y)	cm/rad
Output RMS emittance (Longi.)	0.144	0.133		MeV*deg
Output Longi. α_{o}	0.0931	-0.049	0.014	
Output Longi. $\beta_{\rm o}$	474	472	405	deg/MeV
Transmission rate	97.2%	97.3%(Total) 96.3%(Acc.)	91.5%	

Beam dynamics

• DTL

Configuration

Constant gradient PMQ FDFD lattice No MEBT

Design and simulation

Parmila

Input/output energy	3.0/13	MeV
Peak current	50	mA
Synchronous phase	<i>-</i> 30→ <i>-</i> 24	Degree
Accelerating field	2.2→3.8	MV/m
Peak power	1.2	MW
Lens gradient	84.6	T/m
Lens effective length	4	cm
Cell number	40	
Total length	4.37	m

DTL design and simulation

ICFA HB2014 workshop, Nov. 10~14, East Lansing

CPHS

Beam dynamics

• HEBT

Role

Deliver low emittance proton beam from DTL to target station Uniform round beam spot (diameter of 5 cm) on Be-target

Design and simulation procedures

TRANSPORT (1st order) =>

Basic parameters of each elements (Quad, Dipole)

Optimal position of octupole magnets

TURTLE (3rd order) =>

Parameters of three octupole magnets

Beam line

- 2 dipoles
- 9 quadrupoles
- 3 octupoles
- 2 set of steering magnets

HEBT simulation

Beam dynamics

CPHS

• End to end simulation

Simulate the present status of the linac. Particle tracking by TraceWin with 10⁶ particles. From IS to the neutron target station.

Beam dynamics

CPHS

• End to end simulation

Beam profile measurement

- 2D profile \succ
- Twenty carbon wires rotatable with the diameter of 30 µm.
- \succ The current signal is obtained from the Secondary Electron Emission and then amplified by a set of electronics system.

- Total Variation Algebraic Reconstruction Techniques (TV-ART) CT Algorithm is used to rebuild the image of the beam profile.
- The electronics system for the measurement of the twenty wires will be ready at the end of this year.
- The dynamic range is expected to be 10⁵
- One profile measurement is expected to be finished in ten minutes.

Measurement

ICFA HB2014 workshop, Nov. 10~14, East Lansing

CPHS

Beam position measurement

CPHS

- ➢ Button-type BPM.
- ➢ 20 dB amplifier.
- ➤ hadron phase & position processor- Libera Single Pass H.
- IQ sample signals can be obtained by using the method of undersampling and digital orthorhombic demodulation. These signals are used to calculate the amplitude and phase.

- Beam dynamics simulation has been carried out by various codes for the CPHS Linac.
- End to end simulation has been accomplished by TraceWin, as a cross-check to the design and a reference to the operation.
- Beam profile measurement system and Beam position measurement system are under development. The primary measurements have been finished.

Thank you for attention!

