

Simultaneous Acceleration of Stable and Radioactive Beams in ATLAS

B. Mustapha and P. Ostroumov (ANL/PHY) A. Perry (ANL&IIT) and M. Fraser (CERN)

HB-2014 Workshop November 10-14, 2014 East Lansing, Michigan, USA

Outline of the Talk

- A brief Introduction to the ATLAS Linac at Argonne
- Recent ATLAS Upgrades:
 - Radioactive beams from CARIBU
 - Efficiency & Intensity Upgrade: New RFQ and Cryomodule
- Increasing beam demand and the need for multi-user capabilities
- EBIS charge breeder and simultaneous acceleration of stable and radioactive beams
- The injection: A pulsed deflector and an achromat
- The extraction: A kicker and a septum magnet
- Staging of the ATLAS multi-user upgrade
- Summary

ATLAS: Argonne Tandem Linac Accelerator System

CARIBU: CAlifornium Rare Isotope Breeder Upgrade

- Radioactive beams from a Californium Source
- ✓ The ions are collected, separated and cooled to form a beam
- ✓ An ECR Charge breeder is now used for injection and acceleration in ATLAS
- ✓ An EBIS charge breeder was developed for higher efficiency and better purity
- The EBIS was successfully tested offline and it's ready for installation next year

Efficiency & Intensity Upgrade: New RFQ and SC Module

New CW 60 MHz RFQ

- ✓ Split-coaxial with trapezoidal modulations
- ✓ Output matcher for axis symmetric beam
- ✓ In routine operation since early 2013

New SC Module

- ✓ 7 β ~ 0.77 QWR and 4 solenoids
- ✓ Capable of delivering 17.5 MV
- ✓ Replaced 3 old SC modules
- ✓ In routine operation since early 2014

✓ New RFQ: Transmission increased from 50% to 80% → Efficiency & Reliability
✓ New SC Module: Acceleration of 10x more intense beams → Intensity

Increasing Demand for ATLAS Beam Time

- In the past 2 years, the requested experimental beam time significantly exceeded the 5000-5500 hours that ATLAS can deliver yearly.
- With CARIBU online, the demand for beam time is at least doubling ...
- Low intensity radioactive beams from CARIBU will require longer experimental run periods, further reducing the number of users served.
- There is an immediate need for multi-user capabilities

EBIS Charge Breeder & Possible Two-Beam Acceleration

- ✓ EBIS beam is ~ 10 µs to 1 ms pulse with 30 Hz repetition rate \rightarrow < 3 % DF
- $\checkmark~$ DC beam from ECR could be injected into ATLAS in the remaining 97% DF
- ✓ CARIBU Beam masses range from 80 to 170 with Z ranging from 30 to 70
- \checkmark The highest charge-to-mass ratio they could be ionized to is 1/4.
- ✓ ATLAS accelerates any beam with a charge-to-mass ratio > 1/7
- \checkmark The useful charge-to-mass ratio range for the multi-user capability is 1/7 to 1/4
- ✓ If EBIS is operated at 10 Hz, higher q/A \approx 1/3 can be achieved

EBIS Charge Breeder: Successful Off-line Commissioning

- Measured Cs transmission efficiency: > 70 % with > 15% breeding efficiency into a single charge state
- ✓ Will be ready for online installation at CARIBU in 2015 already funded
- ✓ Will enhance both the intensity and purity of CARIBU beams

Modified Injection to Combine two Beams

New achromatic LEBT to transport beams of slightly different q/A

✓ Pulsed electrostatic deflector to combine stable beam from ECR and RIB from EBIS

⁴⁸Ca¹⁰⁺

¹³²Sn²⁷⁺

Combined beams in the LEBT

¹³²Sn²⁷⁺

Two beams out of RFQ into PII @ ~ 300 keV/u

¹³²Sn²⁷⁺

Two beams out of PII into Booster @ ~ 1.5 MeV/u

48Ca¹⁰⁺

RFQ PII BOOSTER Area II Here Extract one beam Here

¹³²Sn²⁷⁺

Existing 40 deg Bend Area

- ✓ Non Achromatic, not suited for multiple beam transport
- ✓ Difficult to tune

Modified 40 deg Bend Area for One Beam Extraction Achromatic 40 deg Bend **ATLAS First Cryo** 17º Magnet **Triplet Booster** Last Cryo 22° Magnet **Buncher Doublet** Triplet **To Area II** Singlet **1m** Scale: -**Booster Pulsed chicane under ATLAS main line** Last Cryo Triplet **To Area II** 20° Magnet 5° Kicker 15° Septum 20° Magnet 20° Magnet 1m Vertical Scale: -17

⁴⁸Ca¹⁰⁺ at 5.9 MeV/u extracted and sent to Area II

Here

ATLAS

¹³²Sn²⁷⁺ at 5.9 MeV/u injected into ATLAS

Examples of Possible Simultaneous Stable and RIB Beams

Q/A	Stable ATLAS beams	CARIBU beams
0.25000	²⁰ Ne ⁵⁺ , ²⁸ Si ⁷⁺ , ³⁶ Ar ⁹⁺	⁸⁴ Se ²¹⁺ , ⁸⁸ Kr ²²⁺ , ⁹² Sr ²³⁺ , ¹⁰¹ Mo ²⁵⁺ , ¹⁰⁵ Ru ²⁶⁺
0.24138	⁵⁸ Ni ¹⁴⁺	⁸³ As ²⁰⁺ , ⁹⁵ Y ²³⁺ , ¹⁰⁴ Tc ²⁵⁺ , ¹¹² Pd ²⁷⁺ , ¹¹⁷ Cd ²⁸⁺
0.24000	⁵⁰ Ti ¹²⁺	⁸⁸ Br ²¹⁺ , ⁹¹ Rb ²²⁺ , ¹⁰¹ Zr ²⁴⁺ , ¹⁰⁵ Ru ²⁵⁺ , ¹¹⁷ Cd ²⁸⁺
0.23809	⁶³ Cu ¹⁵⁺	⁸⁹ Rb ²¹⁺ , ⁹⁷ Sr ²³⁺ , ¹⁰⁵ Mo ²⁵⁺ , ¹⁰⁹ Rh ²⁶⁺ , ¹¹³ Ag ²⁷⁺
0.23596	89γ21+	⁸⁹ Kr ²¹⁺ , ⁹⁷ Sr ²³⁺ , ¹⁰² Zr ²⁴⁺ , ¹¹¹ Rh ²⁶⁺ , ¹¹⁹ Cd ²⁸⁺
0.23214	⁵⁶ Fe ¹³⁺	⁹⁴ Kr ²²⁺ , ¹⁰⁰ Sr ²³⁺ , ¹¹³ Rh ²⁶⁺ , ¹²⁶ Sn ²⁹⁺ , ¹⁴³ Ce ³³⁺
0.22917	⁴⁸ Ti ¹¹⁺ , ⁷⁴ Ge ¹⁷⁺	⁹² Kr ²¹⁺ , ¹⁰⁵ Nb ²⁴⁺ , ¹⁰⁹ Tc ²⁵⁺ , ¹¹⁹ Pd ²⁷⁺ , ¹⁴⁹ Nd ³⁴⁺
0.22857	³⁵ Cl ⁸⁺	¹⁰⁰ Y ²³⁺ , ¹⁰⁹ Tc ²⁵⁺ , ¹²⁷ Sn ²⁹⁺ , ¹³² I ³⁰⁺ , ¹⁵⁹ Gd ³⁶⁺
0.22500	⁴⁰ Ca ⁹⁺ , ¹⁰² Ru ²³⁺ , ¹²⁰ Sn ²⁷⁺	⁸⁹ Br ²⁰⁺ , ¹¹² Rh ²⁵⁺ , ¹³⁹ Xe ³¹⁺ , ¹⁵⁷ Sm ³⁵⁺ , ¹⁵⁶ Eu ³⁵⁺
0.22368	⁷⁶ Ge ¹⁷⁺	⁹⁰ Br ²⁰⁺ , ⁹⁹ Sr ²²⁺ , ¹³⁵ Te ³⁰⁺ , ¹²⁸ Cs ³¹⁺ , ¹⁶¹ Gd ³⁶⁺
0.22034	⁵⁹ Co ¹³⁺	⁹¹ Rb ²⁰⁺ , ¹⁰⁵ Zr ²³⁺ , ¹²³ Cd ²⁷⁺ , ¹³¹ Te ²⁹⁺ , ¹⁴⁶ Pr ³²⁺
0.20513	⁷⁸ Kr ¹⁶⁺	⁹³ Y ¹⁹⁺ , ¹⁰² Mo ²¹⁺ , ¹³² Sn ²⁷⁺ , ¹⁴¹ I ²⁹⁺ , ¹⁶² Eu ³⁴⁺
0.20408	⁹⁸ Mo ²⁰⁺	⁹⁸ Sr ²⁰⁺ , ¹⁰⁸ Mo ²²⁺ , ¹¹⁷ Pd ²⁴⁺ , ¹³⁶ Sb ²⁸⁺ , ¹⁶¹ Sm ³³⁺
0.20312	⁶⁴ Zn ¹³⁺	⁸³ Se ¹⁷⁺ , ⁹³ Υ ¹⁹⁺ , ¹¹⁷ Ag ²⁴⁺ , ¹³² I ²⁷⁺ , ¹⁶⁶ Tb ³⁴⁺

More Examples of Possible Simultaneous Beams ...

Q/A	Stable ATLAS beams	CARIBU beams
0.20000	⁴⁰ Ar ⁸⁺ , ⁶⁰ Ni ¹²⁺ , ⁹⁰ Zr ¹⁸⁺ , ¹³⁰ Te ²⁶⁺	⁸⁵ Se ¹⁷⁺ , ¹¹⁰ Mo ²²⁺ , ¹²⁴ In ²⁵⁺ , ¹⁴¹ I ²⁸⁺ , ¹⁵⁹ Pm ³²⁺
0.18939	¹³² Xe ²⁵⁺	¹⁰⁵ Ru ²⁰⁺ , ¹²⁶ In ²⁴⁺ , ¹³⁷ I ²⁶⁺ , ¹⁵³ Pr ²⁹⁺ , ¹⁶⁵ Tb ³¹⁺
0.17968	¹²⁸ Xe ²³⁺	⁹⁵ Y ¹⁷⁺ , ¹⁰⁵ Tc ¹⁹⁺ , ¹³⁴ Sn ²⁴⁺ , ¹⁴⁴ Xe ²⁶⁺ , ¹⁴⁹ La ²⁷⁺
0.17857	⁸⁴ Kr ¹⁵⁺	¹⁰⁰ Nb ¹⁸⁺ , ¹¹¹ Tc ²⁰⁺ , ¹¹⁷ Cd ²¹⁺ , ¹⁴¹ Xe ²⁵⁺ , ¹⁴⁷ La ²⁶⁺
0.17721	⁷⁹ Br ¹⁴⁺ , ¹⁰⁷ Ag ¹⁹⁺	⁹⁶ Rb ¹⁷⁺ , ¹⁰⁷ Nb ¹⁹⁺ , ¹¹⁹ Cd ²¹⁺ , ¹³⁵ Te ²⁴⁺ , ¹⁵¹ Nd ²⁷⁺
0.17500	⁸⁰ Se ¹⁴⁺	⁹¹ Kr ¹⁶⁺ , ⁹⁷ Zr ¹⁷⁺ , ¹⁰⁹ Ru ¹⁹⁺ , ¹³¹ Sb ²³⁺ , ¹⁴³ Ba ²⁵⁺
0.15546	²³⁸ U ³⁷⁺	⁸³ Se ¹³⁺ , ⁹⁰ Kr ¹⁴⁺ , ⁹⁷ Sr ¹⁵⁺ , ¹⁰³ Zr ¹⁶⁺ , ¹⁴¹ I ²²⁺
0.15116	⁸⁶ Kr ¹³⁺	⁸⁶ Se ¹³⁺ , ⁹² Rb ²²⁺ , ¹⁰⁰ Sr ²³⁺ , ¹⁰⁵ Zr ²⁴⁺ , ¹⁰⁶ Nb ²⁴⁺
0.15000	¹⁸⁰ Hf ²⁷⁺	⁸⁷ Br ¹³⁺ , ⁹⁴ Kr ¹⁴⁺ , ¹⁰⁰ Sr ¹⁵⁺ , ¹⁰¹ Y ¹⁵⁺ , ¹⁰⁷ Nb ¹⁶⁺
0.14904	²⁰⁸ Pb ³¹⁺	⁸⁸ Se ¹³⁺ , ⁸⁸ Br ¹³⁺ , ⁹⁴ Rb ¹⁴⁺ , ¹⁰⁰ Y ¹⁵⁺ , ¹⁰⁷ Nb ¹⁶⁺
0.14832	²⁰⁹ Bi ³¹⁺	⁸⁷ Se ¹³⁺ , ⁸⁷ Br ¹³⁺ , ⁹⁵ Rb ¹⁴⁺ , ¹⁰² Y ¹⁵⁺ , ¹⁰⁸ Nb ¹⁶⁺
0.14721	¹⁹⁷ Au ²⁹⁺	⁸⁹ Se ¹³⁺ , ⁸⁹ Br ¹³⁺ , ⁹⁵ Rb ¹⁴⁺ , ¹⁰² Y ¹⁵⁺ , ¹⁰⁸ Nb ¹⁶⁺
0.14286	¹³³ Cs ¹⁹⁺	⁸⁴ As ¹²⁺ , ⁹⁸ Rb ¹⁴⁺ ,

Stable and RIB Beams have q/A within $1\% \rightarrow$ A lot of flexibility

Stage I of the ATLAS Multi-User Upgrade

- Will allow:
 - The simultaneous acceleration of two beams
 - One stable from ATLAS-ECR and one radioactive from CARIBU-EBIS
 - One to the Booster energy and one to the full ATLAS energy
- Will require:
 - Installing the newly developed EBIS charge breeder, coming in 2015
 - Building an achromatic LEBT upstream of the RFQ
 - Building a pulsed switchyard for one beam extraction at the end of Booster

Stage II of the ATLAS Multi-User Upgrade

- Will allow:
 - Simultaneous acceleration of two beams (one stable and one radioactive) to the full energy of ATLAS
 - The acceleration of higher intensity stable beams to the full ATLAS energy
 - ightarrow Higher intensity inflight radioactive beams from the future AIRIS separator
- Will require:
 - Replacing three old split-ring cryostats with at least one new QWR cryostats.
 - Modifying the 40-deg bend to be achromatic
 - Reconfiguring the shielding to accommodate higher intensity beams in ATLAS
 - Creating pulsed switchyards downstream of ATLAS

Stage II of Multi-User Upgrade

Stage III of the ATLAS Multi-User Upgrade

- Will allow:
 - The simultaneous acceleration of three beams; two stable and one radioactive to either Booster or ATLAS energy to serve 3 different experiments simultaneously
 - Even higher intensity ATLAS beams, both stable from a new SC ECR and radioactive by combining multiple charge states
 - Intensities of stable beams will be a factor of 5-10 higher than now
- Will require:
 - Replacing one of the existing ECRs with a new high-performance SC ECR source
 - Developing and installing a chopper system in the LEBT to inject two stable beams with close q/A into two separate RF buckets of the RFQ
 - Modifying the injection for multiple-charge-state radioactive beams from EBIS
 - Developing and installing two RF switchyards for Areas II and III
 - Modifying experimental beam lines to allow the transport of multiple-chargestate and larger emittance beams

Summary

- With the EBIS online installation it will possible to simultaneously accelerate stable and radioactive beams in ATLAS and increase the available beam time for the users
- Phase I of the Multi-User Upgrade can be implemented within 2 years at low cost → serving two experiments at the same time
- Phase II: Replacement of remaining 3 split-ring cryomodules with one or two QWR cryomodules → acceleration of two beams to the highest available energies, including dual charge state beam from CARIBU-EBIS
- Phase III: A new SC ECR source and RF injection and extraction system → serve three experimental areas simultaneously with more flexibility