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LHC layout and planning
Year TeV Lnom fb-1

2011 RunI
50ns

7 20% 5.6

2012 8 75% 30

2013
LS1

splice  consolidation, 
R2E, bpm collimators

2014

2015 RunII
25ns

13 ->
14

2016

EYETS SPS CC
2017

RunII 1x 1502018

LS2
LIU, cryo P4, 11T,
Exp. upgrade phase I

2019

2020
RunIII
25ns

14 2x

300

2021

2022

2023

LS3
HL-LHC upgrade,
Exp. upgrade phase II2024

2025

RunIV
25ns

14
5x or
7x

250/
year

2026

….
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High intensity and high brightness beams are a key 

ingredient to fulfill the LHC and HL-LHC goals.

Content:

• LHC Intensity and brightness limitations

• LHC injector beam production reach

• Experiment constraints and physics run conditions

• Parametric analysis of luminosity expectations

The focus of the talks is on pp runs, although the LHC 

has also a very ambitions heavy ion physics program.

Outline
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LHC Beam current limitations
LHC nominal: 1.1 1011 ppb, 2748 bunches,  about 0.5 A.

HL-LHC  baseline: 2.2 1011 ppb, 2748 bunches, about 1 A.

e-cloud to be solved by scrubbing  the dipoles below SEY 1.3 

and increase cooling capacity and/or apply coating in the 

standalone quadrupoles.

Couple bunch instability stabilized  by the damper.

Single bunch instability threshold far in the present model 

(with metallic collimator) or stabilized by head-on tune 

spread.

Intercepting devices replaced with more robust ones.

Understanding intensity limitations in the LHC is constantly evolving.
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LHC Injection to Collisions  
R. Tomas, O. Dominguez
IBS blow-up model• 5% intensity loss assumed during the cycle such 

that average lifetime >20h and never below 0.5 h 

to be compatible with collimators

• 10 % emittance blow-up + IBS in H plane and

• additional source in the vertical plane 40h.

• control of the blow-up due to electron clouds

• 10 cm bunch length to reduce IBS.

ϵcol ≈ 1.1 ϵinj + 0.2 Nb /ϵinj [1011/µm] 

Assumed for both plane for simplicity 
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LHC injectors after LS1

E Kb Nb εT/γ

[GeV] [1011] [µm]

Linac2 to PSB 0.05* 1/ring 19.2 1.5

PS inj. 1.4* 2+4 18.2 1.6

PS ext. 26 72 1.4 1.6

SPS ext. 450 4x72 1.4 1.9

LHC inj. 450 2748 1.3 2.4

LHC physics 7000 2748 1.2 2.7

* Kinetic Energy

G. Rumolo et al. for the LIU team
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LHC injectors after Upgrade (LIU) in LS2 

E Kb Nb εT/γ

[GeV] [1011] [µm]

Linac4 to PSB 0.16* 1/ring 29.6 1.5

PS inj. 2* 2+4 28.1 1.6

PS ext. 26 72 2.3 1.6

SPS ext. 450 4x72 2.2 1.9

HL-LHC inj.
450 2748

2 1.9

HL-LHC target 2.32 2.2

HL-LHC physics
7000 2748

1.9 2.3

HL-LHC target 2.2 2.5

* Kinetic Energy 

G. Rumolo et al. for the LIU team

Linac 4
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Standard  beam production

kb Nb εT/γ

[1011] [µm]

LHC inj. STD
<LS2 2748

1.3 2.4

LHC physics 1.24 2.7

LHC inj. STD
>LS2 2748

2 1.9

LHC physics 1.9 2.3

Standard scheme:
(maximum number of bunches in LHC)

50 ns

25 ns

LHC Filling: 2748 bunches, colliding 2736 in ATLAS/CMS, 2452in Alice, 2524 in LHCb

G. Rumolo et al. for the LIU team

B. Gorini
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BCMS beam production

Evian workshop 2014
1

4h = 

21

h = 9 10 

1112  13 
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 =
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8
4

+4 
bunches

4 
bunches

h = 9

BCMS scheme:
(less bunches in LHC but higher 

brightness)

50 ns

25 ns

PS batches with 48 (24) bunches for 25ns (50ns)

LHC Filling: 2604 bunches, colliding 2592 in ATLAS/CMS, 2288 in Alice, 2396 in LHCb

kb Nb εT/γ

[1011] [µm]

LHC inj. STD
<LS2 2748

1.3 2.4

LHC physics 1.24 2.7

LHC inj. STD
>LS2 2748

2 1.9

LHC physics 1.9 2.3

LHC inj. BCMS
<LS2

2508/
2592

1.3 1.28

LHC physics 1.24 1.6

LHC inj. BCMS
>LS2

2508/
2592

2 1.38

LHC physics 1.9 1.8

G. Rumolo et al. for the LIU team
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Average pile-up limit for ATLAS and CMS:

• ATLAS/CMS LHC: 50 event/crossing

• ATLAS/CMS HL-LHC: 140 to 200 events /crossing

• LHCb HL-LHC: 4.5 events /crossing

LHC pp operational constraints
Max luminosity for:

LHCb LHC:  4 to 6 1032 cm-2s-1

Alice LHC:  5 1029 to 2 1030 cm-2s-1

Alice HL-LHC:  2 1031 cm-2s-1.

Scheduled Physics Time: 160 days with 50% physics efficiency (RunI: 53%)
Average fill duration: 6.1h on average of Run I due to mainly faults.

ATLAS event reconstruction

15



Luminosity evolutions LHC

virtual peak 

Luminosity

w/o leveling

tlev

tdecay

tta

t [h]

L a
ve

[1
0

3
4

cm
-2

s-1
]

𝑑𝑁

𝑑𝑡
= −

𝑁

𝜏
= −𝑛IP𝜎𝐿lev 𝜏 =

𝑁

𝑛IP𝜎𝐿lev
;

𝐿virt = 𝑘 𝐿lev 𝑡lev= 𝜏 1 −
1

𝑘
= 𝜏𝐾

𝑡decay =
𝜏

1+𝐾
−𝐾 + 𝐾2 + 𝐾 + 1

𝑡ta
𝜏

;

𝐿ave = 𝐿lev

𝑡lev +
𝑡decay𝜏

𝑡decay + 𝜏

𝑡lev + 𝑡decay + 𝑡ta

Levelling is key ingredient for HL-LHC and 
maybe be even needed for LHC. F. Zimmermann

Lumi evolution  model with burn-off for 
performance with optimal fill length evaluation
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Post-LS1 Standard beams
Injector brightness curves LHC Integrated luminosity expectations

G. Rumolo et al. for the LIU team
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Post-LS1:  BCMS beams
Injector brightness curves LHC Integrated luminosity expectations

G. Rumolo et al. for the LIU team
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Post-LS2:   Standard Beam
Injector brightness curves LHC Integrated luminosity expectations

G. Rumolo et al. for the LIU team

19



Post-LS2:   BCMS beams
Injector brightness curves LHC Integrated luminosity expectations

G. Rumolo et al. for the LIU team
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Bunch
Spacing

Bunch
Population

Emit.
Coll.

Pile-up
Max/Lev

Daily
Lumi
[fb-1]

Fill duration
(levelled time)
[h]

LHC
6.5 TeV
β*=60cm

25 ns 1.2 · 1011
2.8 µm Std 30/50 0.58 10.1

1.7 µm BCMS 50/50 0.78 7.5

50 ns 1.6 · 1011
2.0 µm Std 76/50 0.53 8.1(5.6)

1.6 µm BCMS 95/50 0.52 7.8(4.4)

HL-LHC
7 TeV
β*=15cm

25 ns 1.9 · 1011
2.3 µm Std 419/140 2.99 7.2(5.7)

1.9 µm BCMS 510/140 2.93 7.8(6.7)

25 ns 2.2 · 1011 2.5 µm Std 517/140 3.17 8.6(7.3)

50 ns 3.5 · 1011 3.0 µm  Std 517/140 1.75 15(14.1)

Daily integrated luminosity estimates

Differential model including IBS, radiation damping, noise sources.
G. Arduini 
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HL-LHC Performance reach
• Assuming  80 days of successful fills limited by leveled luminosity and fill 

durations, how much luminosity may we integrate in one year?

𝐿int = 0. 5 𝑡phys𝐿lev
𝑡fill

𝑡fill+ 𝑡turnaround

Average  fill 
duration  2012

Simplest model that bounds integrated 
performance:
run at max allowed luminosity for half of the 
scheduled physics until a failure occurs.

𝐿lev ~ 𝑛pileup ∙ 𝑛bunches
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HL-LHC Performance reach
• Assuming  80 days of successful fills and a given peak luminosity how much 

luminosity may we integrate in one year?

→ Virtual luminosity must be much larger than levelled luminosity to exploit 

the parameter space, provided reliability will improve.

→ Virtual luminosity  is proportional to brightness, but…
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Performance reach
• Assuming  80 days of successful fills and a given peak luminosity how much 

luminosity may we integrate in one year?

→ … for the same virtual luminosity, the decreasing intensity is less efficient,
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Performance reach
• Assuming  80 days of successful fills and a given peak luminosity how much 

luminosity may we integrate in one year?

→ or even increasing virtual luminosity at the cost of some intensity is not 

equivalent.
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• The LHC and HL-LHC relies on high brightness to fulfil their 
goals, thanks the upgrade plans and the progress in 
understanding and circumventing limitations.

• At constant brightness, larger intensity offer the best reach 
when coupled with long fill thanks to larger luminosity 
lifetimes that fights against the turnaround time loss.

• Conversely if unexpected beam dumps are very frequent, 
brightness through low emittance is competitive, if it also 
contributes to increase reliability.

• However, the brightness gain with emittances is easily lost in 
integrated luminosity if it comes with less  colliding bunches 
even for large brightness increase and

• strong emittance reduction are also lost early due to IBS.

Conclusion
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