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Abstract

A new non-relativistic, electrostatic Particle-in-Cell code

named bender has been implemented to facilitate the investi-

gation of low-energy beam transport scenarios. In the case of

high-intensity beams, space-charge compensation resulting

from the accumulation of secondary particles – electrons for

positively charged ion beams – is an important effect. It has

been shown, that the distribution of compensation electrons

can have a significant influence on the beam and lead to an

emittance growth. To improve the understanding of the dy-

namics of the compensation and the resultant self-consistent

steady state, ionization of residual gas as well as secondary

electron production on surfaces have been implemented and

used to study a number of test systems. We will present

first results of these compensation studies as well as further

applications of the code, among them the chopper section

of the future FRANZ facility [1].

IMPLEMENTATION

The Particle-in-Cell [2] code bender is written in the C++

language and uses MPI for parallelisation. It reads input files

in an XML-style format. All numerical values in this file are

affixed with units. The output of the code can be configured

to include particle distributions and losses, field and potential

distribution and single particle tracks, as required.

External fields can either be loaded from data exported

from tools like the CST Suite or Opera, calculated numeri-

cally via either the solution of Laplace’s equation on a lattice

or from the Biot-Savart law by integrating the current flow

through wires defined by analytic expressions, or calculated

from several available field models, including multipole field

distributions and several solenoid field models.

For use as boundaries for either particle movement or

the Poisson solver, various geometric primitives like planes,

tubes and plates are implemented. For more complex ge-

ometries, an import from STL files is available.

All geometric objects in the code can then be transformed

by one or multiple affine transformations, which allows ob-

jects like fields, geometric objects, monitors and even pois-

son solvers to be placed in the simulation "space" at will.

To simulate dc beams, a fixed number of particles, spread

out over vbeam∆t, are inserted in every time step, continu-

ously building up the beam volume.

Field Solvers

The code provides three solvers for Poisson’s equation.

For problems requiring either non-equidistant grid spac-

ing or geometrically complex boundary conditions, there is
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a cartesian solver using a Shortley-Weller finite-difference

stencil [3]
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2ǫ0
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where ∆± are the distances to either the neighbouring grid

points or a grid boundary. Dirichlet, Neumann and peri-

odic boundary conditions on the grid boundaries can be

considered. The grid can be distributed among processors

in blocks in all directions, which allows bent geometries to

be followed without wasting memory on inactive regions.

An example is shown in Fig. 1.

On initialisation of the solver, all processors calculate

the positions and the sizes of boundary surfaces with their

neighbours. In a second step, intersections between the

grid lines and the boundary objects given for the solver are

calculated in multiple passes over each direction. In the first

of the three passes, grid points not contained in any boundary

object are assigned a global index. When an intersection

with an object is found on the line between two grid points,

its position is stored for the respective active grid point using

its index. In a third step, the geometric information gathered

is communicated in the bounding areas found in the first

step.

After mesh generation, a sparse matrix for the potential

on the grid points is constructed using Eq. (1). To solve this

matrix, the PetSc library [4] is used. After the solution

process, to be able to calculate the electric field in the region

between the grid portions local to two processors, potential

Figure 1: Example of a calculation of electric potential of

a guided electron beam on 16 processors. The coloured

rectangles show the grid portions on each processor. Each

domain is additionally split in vertical direction. The grey

portions of the grid are disabled on each processor, the white

portions are not considered by any processor.
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values from the neighbouring processors are required and

are therefore communicated.

For simulations of radially symmetric systems, the code

includes an rz finite difference solver also using the PETSc

library. In the case only a rectangular grid with equidistant

spacing is required, a 3d xyz solver using Fourier’s method

implemented using the FFTW library [5] can be used. Both

of these solvers allow for Dirichlet, Neumann or periodic

boundary conditions and can be distributed among proces-

sors in longitudinal direction.

All three solvers don’t require particles to be local to their

grid portions. However, when requested, particles can be

distributed among processors according to each processors

portion of the grid, reducing the amount of communication

in the field accumulation step.

Particle Pusher

particle motion, among others one using the standard RK4

integration algorithm and a symplectic Euler integrator. The

(non-relativistic) algorithm used in the simulations presented

below is

ri+1 = ri +
∆t

m
(pi + ∆pi )

pi+1 = pi + A−1
i+1

(

pi + ∆pi +
q∆t

2
Ei+1

)

∆pi+1 =
q∆t

2
Ei+1 + λpi+1 × Bi+1,

where ri and pi are the particles position and momentum in

the i’th step, q and m its charge and mass, ∆p was defined

to avoid recalculation between adjacent time steps, λ =

q∆t/ (2m) and

Ai =
*.
,
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The implementation was compared to several analytically

solvable test cases and showed second order accuracy as

well as long time energy conservation.

SPACE CHARGE COMPENSATION

Two processes lead to the production of electrons in pos-

itive low-energy ion beams: impact ionisation of residual

gas atoms and molecules and secondary particle production

due to the impact of particles on the beam pipe. These elec-

trons can then be trapped inside the beams positive potential,

reducing it until a steady-state is produced.

The amount of electrons produced per meter per second

by a beam of energy E, current I in a homogeneous residual

gas background of pressure p and temperature T is given by

ν =
Ipσ(E)

ekT
,

where σ(E) is the total proton impact ionisation cross sec-

tion. For I = 100 mA, E = 120 keV protons on p =

1 × 10−3 Pa, T=300 K N2, ν = 8 × 1015 electrons/s/m are

produced. The energy of most of these electrons is not large

enough for them to cause additional ionisation. However,

in high-intensity beams, the space charge potential can be

high enough for electrons to gain sufficient energy to ionise

additional gas molecules.

Secondary electron production on surfaces for protons

is in the order of a few electrons per impact, depending

on energy, impact angle and surface composition. Thus, if

significant portions of the beam (0.6 % for the parameters

given above) are lost, this mechanism dominates residual

gas ionisation. However, since these electrons are created at

zero potential, it is unclear if they are able to remain in the

system for long times.

For the simulation, Argon was considered as a residual

gas, as a compromise between absolute value – lower cross

section meaning longer simulation time –, complexity of the

residual gas ions – for H2 for example, H+
2

and H+ + H0 are

produced–, and data availability.

Ionising collisions were implemented in bender using

the Null-collision method [6]. Argon is considered as an

homogeneously distributed ideal gas. Single-differential

cross section data for proton impact ionisation were taken

from [7]. Electron impact cross section data is calculated

from the Binary-Encounter-Bethe-model [8]. The velocities

of the freed electrons are then distributed isotropically. Un-

der the assumption, that the remaining, very low-energy ion

travels in the direction of the projectile, the deflection angle

of the projectile and the energy of the residual gas ion can

be calculated from energy and momentum conservation.

Compensation Without Magnetic Fields

Initially a system without any magnetic focussing ele-

ments was investigated. A 100 mA, 120 keV beam with an

emittance of 100 mm mrad was matched through a 50 cm

drift section in a way, that avoids particle losses at 0 % to

100 % compensation. The section is bounded by two repeller

Figure 2: Proton, electron, residual gas ion and total charge

densities for the simulation of a 50 cm long drift system.

Bender implements various algorithms for integration of
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Figure 3: Global compensation degree and particle losses from the compensation simulation of a 50 cm drift. The

compensation degree is plotted for two simulations – one including electron impact ionisation and one with just proton

impact ionisation ("no col."). Particle losses are registered on the repeller electrodes at the end of the system and on the

beam tube in radial direction. Some ions as well as a small amount of electrons created inside the repeller are accelerated

out of the simulation volume longitudinally through the repeller apertures.

electrodes at −1.5 kV potential to trap electrons longitudi-

nally.

Simulation runs were made using either the rz- oder the

fast fourier poisson solver, on a grid of either ∆r = 0.1 mm,

∆z = 0.2 mm or ∆x = ∆y = 0.4 mm, ∆z = 1.7 mm. The

time step used was ∆t = 25 ps. On 12 processors of the

"Fuchs" cluster [9] using the rz solver and 50 macroparticles

inserted per step, simulation time is about 1 day for 25 µs.

Figure 3 shows the global compensation degree during

built-up of compensation. For the first 10 µs, the compensa-

tion degree follows

ηcomp(t) =
vbeame

I
νt,

which means, that only a negligible amount of electrons is

able to escape the confinement.

After the initial linear increase, at about 7 ns, the potential

is sufficiently reduced for electrons to start escaping. After

17 ns the electron loss current – almost exclusively in radial

direction – equals the current of residual gas ions. At this

point, an equilibrium is reached, with a global compensa-

tion degree of 80.7 %. The introduction of electron impact

ionisation increases this value to 83.3 %.

The argon ions produced by ionisation are constantly ac-

celerated out of the system radially. The amount of ions in

the system slowly increases during the built-up, due to the

decrease in space charge potential. In the steady-state, argon

ions are responsible for an additional positive charge of 8 %

of the beams charge.

The densities in the steady-state of the system are shown

in Fig. 2.

It was found, that the electron velocities at a given lon-

gitudinal position follow a Gaussian profile. This would

suggest that the system is in a thermodynamic equilibrium.

The temperature is neither isotropic, Tx ≈ Ty , Tz , nor is it

equal everywhere in the system. Table 1 shows the plasma

parameters for the electrons at the position of the beams

focus.

Table 1: Plasma Parameters of Compensation Electrons at

z = 28 cm

Tx 34.1 eV

Ty 33.7 eV

Tz 48.1 eV

ne 3.9 × 1015 m−3

λd 0.7 mm

ωp 0.5 GHz

lnΛ 16.6

For such a system, a self-consistent solution of the Poisson-

Boltzmann equation given in 1d under the assumption of a

radially symmetric and longitudinally homogeneous system

1

r

d

dr

(

r
dϕ(r)

dr

)

= −
1

ǫ0
(ρbeam (r) − ρe (r)) ,

ρe(r) = ρ0 exp

{

−
eϕ(r)

kT

}

(2)

should provide the spatial distribution of the compensation

electrons. ρ0 can be determined by setting the total electron

charge to a fraction ηcomp of the beams total charge,

∫ R

0

dr r ρbeam (r) = ρ0ηcomp

∫ R

0

dr r ρe(r (3)

Figure 4 shows the solution of Eq. (2) and (3) in comparison

to the bender solution. Except for an excess of electrons

close to the axis – probably a result from the presence of

the residual gas ions – the simulation agrees very well to the

simple 1d theory. In general, this means that for finite elec-

tron temperatures even at 100% space charge compensation,

there is some remaining space charge force on the beam.

The source of the thermal distribution is yet unclear, and

could be a result of (numerical) noise in the particle distri-

butions. In a physical system with the parameters given in

Coulomb collisions on a timescale of [10]

τee = 3π(2π)1/2
ǫ2

0
(kT )3/2

nee4m1/2 lnΛ
≈ 0.5 ms.

). . .

Tab. 1, particles should relax to a thermal distribution due to
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Figure 4: Radial electron distribution at z = 10 cm from the

solution of the Poisson-Boltzmann equation (2) in compari-

son to the bender simulation for the drift system using the

fast fourier solver. η = 90.6 % and T = 22.9 eV.

In the simulation however, a thermal electron distribution

can be observed as early as a µs. So far, we have found no

significant dependance of the resulting temperatures on sim-

ulation parameters, except for the choice of solver geometry.

Comparing simulations done using the Fourier solver to the

2d rz-case, the latter shows an excess of electrons with low

absolute velocities.

Simulation of a Two-solenoid LEBT

As a next step, simulation runs for a two-solenoid beam

transport section using the rz solver were made. The 1.6 m

long section includes two 25 cm long solenoids at 0.7 T to

match the beam without any losses.

In these simulations, no steady-state was reached. Es-

pecially in the fringe field regions of the solenoid near the

axis, low-energy electrons and residual gas ions accumulate,

leading to a linear increase in the number of particles for

these species. This spurious accumulation of residual gas

ions near the axis was also found in the 2d simulations made

for the drift section, where it does not grow indefinitely how-

ever. It is noticeably absent in the simulations made using

the 3d fast fourier solver. Several ways to ameliorate the situ-

ation such as incorporating the dynamics of the background

gas (either dynamically or by including a fixed profile) or

including recombination have been suggested.

As for the case of the simple drift, a double layer forms

at the edge of the beam in between the two solenoids. In

the center of the solenoids however, electrons are strongly

bound to the field lines. Thus the size of the double layer is

greatly reduced there.

SIMULATION OF THE FRANZ E×B

CHOPPER

The E×B chopper concept, designed for high-repetition

chopping of a 50 mA, 120 keV proton beam at the Frankfurt

Neutron Source FRANZ [11], uses magnetostatic deflection

to safely dump the unwanted beam fraction, which is com-

pensated for short periods of time by a voltage pulse to two

deflection plates to provide short beam pulses in forward

direction. The copper was successfully commissioned using

a low-energy helium beam [1]. The layout is shown in Fig.

5.

Figure 5: Layout of the E×B chopper located between

solenoid 2 and 3 of the FRANZ low-energy beam transport

section.

Magnetic and electric fields were simulated using the CST

Suite and imported into bender. There is some magnetic

flux from and to the H-type dipole magnet, which provides

static beam deflection, into the adjacent solenoid magnets,

which are used to match the beam to the chopper and the

chopped beam to the following RFQ. To capture this effect

in the simulation and still be able to independently adjust

field levels, each magnet was simulated in the whole setup

but with every other magnet turned of.

First, single particle tracking using bender was used to

understand the distortions produced by the crossed electric

and magnetic field configuration [12]. After optimisation of

the field geometry, simulations including space charge of the

50 mA proton beam were made. In addition to the proton

beam, the simulation includes 5 mA of H+
2

and 5 mA of H+
3

ions produced by the ion source. The input distribution at the

start of the section were taken from 2D matching simulations

of the LEBT. The voltage pulse on the deflection plates was

taken from measurements of the pulse generator.

The geometry of the chopper system was included in the

solution of the electric field of the proton beam. Simulations

were made using a mesh of 2.5 mm in each direction dis-

tributed on 10-20 processors of the CSC cluster "Fuchs" [9].

Figure 6 shows the particle distribution at a time step

during the fall time of the voltage pulse. The beam is swept

over an aperture of 20 mm radius. Both the H+
2

and the H+
3

ions are deflected too strongly, so that only particles in the

flanks of the pulse are transmitted into the following section.
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Figure 6: Snapshot of the chopper simulation, 50 mA proton

beam (blue), 5 mA H+
2

(red) and 5 mA (green).

Transmission of the proton beam through the aperture is, by

design, 100%.

Simulations show, that the design flat-top pulse length of

50 ns can be reached with low beam offset below ±0.3 mm.

The total pulse length is 350 ns. A large fraction of the pulse

flanks has considerable position offset and will be collimated

at the RFQ entrance. However, it was found, that the long

pulse length compared to the flat top helps to mediate the

effect of longitudinal broadening of the pulse by space charge

forces compared to (theoretical) pulses of more step-wise

distribution.

CONCLUSION AND OUTLOOK

The dynamics of space charge compensation has been

studied for some geometrically simple systems using a

Particle-in-Cell code developed at IAP. For a system without

any magnetic field, a thermal distribution of compensation

electrons has been found. Furthermore, the code has been

used extensively for the investigation of the E×B chopper

concept including space charge.

Additionally, bender is in use for several other projects,

including simulation of beam injection into a figure-8 stor-

age ring [13], beam dynamics in CH cavities, simulation

of electron beams in an electron lens for the IOTA ring at

Fermilab [14] and simulation of plasma dynamics in Gabor

lenses [15].
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