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Abstract

Emittance growth and beam loss due to nonlinear space

charge force has been studies using Particle In Cell sim-

ulation. Artificial noise due to macro-particle statistics

sometimes presents unphysical emittance growth. Artifi-

cial noise in Particle In Cell method disturbs the accurate

prediction of the emittance growth. Using a fixed peri-

odic space charge potential is one way to study emittance

growth in a first step. Frozen potential and induced reso-

nance are discussed in this paper. While emittance growth

in a presence of real noise is serious issue in accelerators.

Emittance growth under tune fluctuation is discussed with

relation to studies in beam-beam effects.

INTRODUCTION

In Particle In Cell codes, space charge force is given

by solving Poisson equation for macro-particles distribu-

tion mapped on grid space. Statistics of macro-particles,

which cause a density modulation in the grid space, result

in turn by turn fluctuation of the space charge force. Emit-

tance conservation/growth in a periodic system is subject

of our concern for the space charge effects. Artificial emit-

tance growth caused by the fluctuation disturbs an accurate

prediction, especially in long term simulation. Emittance

growth in a fixed periodic potential can be discussed. In

J-PARC, limitation of particle loss is very severe (1kW for

the beam energy 1MW). Space charge potential is nearly

determined by the core distribution. We can study emit-

tance growth in the potential given by distribution which is

initial or is fixed(frozen) at a time. Resonance and chaotic

behavior in the fixed potential are subjects to be studied. It

is important to study emittance growth dynamically chang-

ing potential for the next step.

Figure 1 shows evolution of x and σx in PIC simula-

tion (SCTR) [1]. The space charge force is calculated turn-

by-turn, where the number of macro-particle is 200,000.

Fluctuations in x and σx are seen. The noises level is

〈x〉 ≈ ±0.05 mm (0.5%σx,0) and σx ≈ 8.5 ± 0.02 mm

(0.2%σx,0). Higher order moments of the beam distribu-

tion must have similar fluctuation. Each particle experi-

ences nonlinear force with the fluctuations in the simula-

tion. Unphysical phenomena is seen in the simulation.
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Figure 1: Evolution of x and σx in Particle-In-Cell sim-

ulation (SCTR). Red and blue lines are given for lattice

without and with magnet alignment errors.

EXPERIENCES OF BEAM-BEAM
INTERACTIONS IN COLLIDERS AND
APPLICATION TO SPACE CHARGE

EFFECTS

Experiences of Beam-beam Interactions in Collid-
ers

Statistical noise in simulations is artifact, but noise in ac-

celerator is sometimes real issue. Noise of collision offset

from bunch-by-bunch feedback system degraded luminos-

ity performance in KEKB [2]. Crab cavity is planned to be

used in High Luminosity LHC. Noise in crab cavity phase

and in bunch-by-bunch feedback system, which causes col-

lision offset, has been studied in LHC [1, 3]. Theory for the

noise effects was developed by G. Stupakov [4] and T. Sen

et al.[5].

Potential (effective Hamiltonian) of the beam-beam in-

teraction is expressed by

U(x) =
Nprp
γp

∫ ∞

0

1− e−x2/(2σ2
r+q)

2σ2
r + q

dqδP (s) (1)

LONG TERM TRACKING
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where rp and γp are the classical radius of the proton and

the relativistic factor of the beam, respectively. The poten-

tial acts once per revolution at the collision point due to the

periodic delta function δP (s) for the circumference. The

potential is expanded by Fourier series as follows,

U(J, ψ) =
NprP
γp

∞∑
k=0

Uk(a) cos 2kψδP (s) (2)

The potential with an offset Δx is given by

U(x+Δx) = U(x) + U ′(x)Δx. (3)

Δx is a random variable fluctuated turn-by-turn. Change

of J per collision is given for the potential by

ΔJ = −∂U(x+Δx)

∂ψ
= −∂U

′

∂ψ
Δx. (4)

∂U(x)/∂ψ, which gives modulation of betatron motion,

does not contribute emittance growth. Averaging the off-

set noise, diffusion of J per collision is given by

〈ΔJ2〉 = ∂U ′

∂ψ

∂U ′

∂ψ
〈Δx2〉 (5)

The Fourier expansion of the potential with respect to

the offset now becomes

U ′(J, ψ) =
Nprp
2γσr

∞∑
k=0

Gk(a) cos(2k + 1)ψ, (6)

where

Gk(a) =
√
a
[
U ′k+1 + U ′k

]
+

1√
a
[(k + 1)Uk+1 − kUk] ,

(7)

and U ′k is the derivative evaluated at a = J/(2ε). Diffusion

of betatron amplitude is expressed by

〈ΔJ2〉 ≈ N2
p r

2
pΔx

2

8γ2σ2
r

∞∑
n=−∞

∞∑
k=0

(2k + 1)2G2
k cos[(2k + 1)nμ]e−|n|/τ

≈ N2
p r

2
pΔx

2

8γ2σ2
r

∞∑
k=0

(2k + 1)2Gk(a)
2 sinh 1/τ

cosh 1/τ − cos(2k + 1)μ
. (8)

The diffusion of betatron amplitude approximately lin-

early depends on its amplitude. The slope is expressed by

〈ΔJ2〉
a

=
N2

p r
2
p

8γ2
Δx2

σ2
r

× 4.4. (9)

Convolution of the Eq.(9) by distribution function gives

emittance growth rate and luminosity degradation as

ΔL

L
=

Δε

ε
=

(
ξ
Δx

σr

)2

× 21.7. (10)

Weak-strong simulation, using frozen Gaussian colliding

beam, has been done to study the effects of noise. 1 Figure

2 shows the luminosity degradation rate as function of off-

set noise amplitude. The rate given by formula Eq.(10) is

plotted by three lines for the beam-beam tune shift values.

The degradation rates agree well.
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Figure 2: Diffusion rate without a crossing angle given

by weak-strong simulation compared with predictions from

Eq. (10).

Strong-strong simulation, in which Poisson solver is ex-

ecuted turn-by-turn using the particle in cell algorithm, has

also been performed. Figure 3 shows the luminosity degra-

dation rate. The agreement with formula Eq.(10) is again

very well.

Application to Space Charge Force
The theory is applicable for space charge force. We

sketch the theory. Beam distribution is assumed to be Gaus-

sian in x-y space.

Nρ(x, y, z) =
λ(z)

2πσxσy
exp

(
− x2

2σ2
x

− y2

2σ2
y

)
(11)

where dispersion is taken into account in σx, σ2
x = βxεx +

η2x(Δ/p)
2. Space charge force distributes along whole

ring. The effective potential/Hamiltonian for one turn map

is evaluated by integration of the space charge potential.

Effective one turn potential (U ) is given by∏
i=0

exp(−Hi+1,i) exp(−Ui) = exp(−H)×
∏

exp(Hi+1,0) exp(−Ui) exp(−Hi+1,0)

= exp(−H) exp(−U) (12)

Leading order expression of U is given by integration of Ui

with taking into account of the betatron phase,

U =

∫
ds′U(s′) =

λprp
β2γ3

∮
ds′ (13)

∫ ∞

0

1− exp
(
−βx(s

′)X(s,x′)
2σ2

x+u − βy(s
′)Y (s,s′)

2σ2
y+u

)
√

2σ2
x + u

√
2σ2

x + u
du

1Simulation using frozen potential is called weak-strong simulation,

and turn-by-turn simulation is called strong-strong simulation in the

beam-beam society.
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Figure 3: Diffusion rate given by strong-strong simulation

compared with predictions from Eq. (10). Top and bottom

are for the beam-beam tune shift 0.0055/IP and 0.011/IP,

respectively.

where

X(s, s′) =
√

2Jx cos(ϕx(s
′) + φx(s))

Y (s, s′) =
√

2Jy cos(ϕy(s
′) + φy(s)) (14)

Cross terms between space charge nonlinearities and be-

tween them of space charge and nonlinear magnetic com-

ponents are neglected.

The Fourier component, which correspond to resonance

strength, is given by

Um(Jx, Jy) =
λprp
β2γ3

∮
ds

∫ ∞

0

du√
2σ2

x + u
√

2σ2
x + u[

δmx0δmy0 − exp(wx − wy)(−1)(mx+xy)/2

Imx/2(wx)Imy/2(wy)e
−imxϕx−imyϕy

]
. (15)

where H and U are one turn effective Hamiltonian of lat-

tice transformation and space charge force, respectively.

The diffusion rate due to offset noise for the space charge

potential Eqs.(13) and (23) is estimated by Eq.(8). Figure

4 shows the Fourier component/resonance strength for hor-

izontal betatron phase as function of betatron amplitude. It

is seen that lower component U40 is dominant. Diffusion

rate due to the noise is evaluated by Eqs.(6) and (7) using

Uk and U ′k evaluated by Fig.4.

Tune Fluctuation due to Ripple in J-PARC MR
We discuss effects of realistic noise in space charge

dominant machine, J-PARC Main Ring. Tune modulation
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Figure 4: Resonance strength given by Eq.(23).

due to ripple of power supply has been observed around

δν ≈ ±0.01 with 50Hz in J-PARC MR,. Diffusion of J
for tune modulation is evaluated by similar formula as the

offset noise as follows,

〈ΔJ2〉 ≡ 〈(J(N)− J(0))2〉
N

(16)

=
1

N

N∑
i=0

N∑
j=0

∂Ui

∂ψ

∂Uj

∂ψ
〈ΔψiΔψj〉. (17)

One summation is replaced byN , then another is expressed

by summation of correlation of the noise.

〈ΔJ2〉 =
∞∑

n=−∞

∂U�

∂ψ

∂U�+n

∂ψ
〈Δψ�Δψ�+n〉. (18)

The correlation is expressed by

〈Δψ�Δψ�+n〉 = 4π2Δν2e−|n|/τc (19)

where the correlation time is 50Hz, τc = 4, 000 turns

(C=1567m). The diffusion rate of the betatron amplitude

is expressed by,

〈ΔJ2〉 = 8π2Δν2
∞∑
k=0

k2U2
k

sinh 1/τc
cosh 1/τc − cos 4πkν

(20)

The diffusion rate is evaluated by Um ∼ 10−7 m at J ∼ 4ε
in Fig. 4.

√
〈ΔJ2〉 ∼ 5.6×10−10m at J ∼ 4ε = 40×10−6m (21)

The beam loss is evaluated by convolution of the beam dis-

tribution and diffusion rate as function of J .

The magnet ripple should cause fluctuations not only

tune but also beta function and dispersion; that is beam size

fluctuate turn-by-turn. In this approach, treatment of reso-

nance is not sufficient. Synchrotron motion may be also

important. These effects are discussed in the future.

FROZEN MODEL IN SCTR CODE
SCTR code has developed to study space charge effects

in J-PARC. The code is based on the ordinary Poisson
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solver using particle in cell algorithm. Basically poten-

tial for space charge force is calculated every 1-2 meter

(< βxy) interval. The potential can be frozen and recal-

culated any time. The potential, which is represented by

spline functions, is stored every points with 1-2 m interval.

Figure 5 shows dipole motion and beam size evolution

in frozen mode (green) compared with those of non-frozen

mode (blue). Dipole motion seen in non frozen mode is

larger than that in frozen mode. It is difficult to say whether

the motion in nonfrozen motion artifact, it enhances emit-

tance growth in the simulation. Beam size in non-frozen

model increase faster, but the difference is not remarkable.

No quadrupole oscillation in non-frozen model is seen.
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Figure 5: Dipole motion and beam size evolution in frozen

mode. Green and blue lines are given by frozen and non-

frozen modes, respectively.

Remarkable difference is seen in hallo distribution and

beam loss. Comparison of frozen/non-frozen model was

performed and presented at PAC07 [1], for example. Fig-

ure 6 shows the difference of frozen/non-frozen simulation.

Red and magenta lines depict beam-loss for frozen model

with 128 × 128 grid, 160k macro-particles and 64 × 64
grid, 40k macro-particles, respectively. The beam loss is

independent of grid size/number and macro-particle num-

ber. Green and blue lines depict beam-loss for non-frozen

model with 128 × 128 and 64 × 64 grid for 160k macro-

particles, respectively. Cyan line depicts beam loss 64×64
grid for 40k macro-particles. Beam statistics strongly af-

fect the beam loss in non-frozen model. This beam loss is

artifact and should be more remarkable for high tune shift

as is also seen in the beam-beam studies.

The frozen model is merit for computation performance

using many processors. For PIC simulation, grid informa-
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Figure 6: Evolution of beam loss in frozen and non-frozen

tion must communicate between processors. The commu-

nication is necessary only when potential is recalculated in

frozen model. Thus parallel computation using > 1000
processors is performed without performance loss. Figure

7 shows beam distribution during fully acceleration of J-

PARC RCS 0.4GeV to 3GeV (top) and MR 3GeV to 30

GeV (bottom) [6].
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Figure 7: Evolution of the beam distribution during accel-

eration of J-PARC RCS(top) and MR(bottom).

Simulation for Choice of Operating Point in J-
PARC MR

The frozen simulation is used for choice of operating

point in J-PARC MR. MR has been operated at (νx, νy) =
(22.40, 20.75). Figure 8 shows beam loss map in the tune

area, 22.0 < νx < 22.5 and 20.5 < νy < 21.0. Green area

corresponds to the loss less than ΔN/N0 < 10−4 in 5,000

model.
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turns. Wide green space is seen for the case without lattice

errors in left picture. When errors are taken into account,

sum x-y linear coupling resonance νx+νy = 43 clearly de-

grades beam loss. Dominant error is rotation of quadrupole

magnets. Sum resonance component of x-y coupling is cor-

rected, then the beam loss is recovered partially as shown

in right picture.

Figure 8: Beam loss map near present operating point.

Loss of green mark is ΔN/N0 < 10−4, in 5000 turns.

Beam loss map is obtained in wider area 20.0 < νx <
23.0 and 20.0 < νy < 22.0 as shown in Figure 9.

Several good operating point are seen around (ν , νx y) =
(21.38, 21.40) and (20.9,20.88). (22.38,22.40) is also good

though it is out of the area. It is possible to study at injec-

tion energy in the area, but is hard for magnet strength at

the top energy. Figure 10 shows the beam loss evolution at

three operating points. Lattice error is taken into account in

this simulation. At present operating point, coupling reso-

nance is severe. but is somewhat recovered by correction

using skew quadrupole magnets. For (21.38,21.40) and

(22.38,22.40), degradation due to lattice error is not severe.

The beam loss is far less than present point. Another mo-

tivation of choosing the operating point νx ≈ νy is better

integrability due to angular momentum conservation in x-y

motion [7, 8]. Beam test is being done for (21.38,21.40)

and (22.38,22.40) in Nov 2014 [9].

Figure 9: Beam loss map wide tune area, 20 < νx < 23,

20 < νy < 22. Lattice error is not taken into account;

wiout and with coupling correction. Loss of green mark is

N/N0 < 10−4 in 5,000 turns.
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Figure 10: Beam loss at operating points (21.38,21.40),

(22.38,22.40) and (22.40,20.75). Lattice error is taken into

account.

EVALUATION OF RESONANCE WIDTH
IN THE FROZEN POTENTIAL

In the frozen model, emittance growth is caused by

chaotic diffusion near resonances. Resonances induced by

the potential in the frozen model can be evaluated analyti-

cally, for example in Gaussian distribution.

Phase space structure near resonances are characterized

by the resonance width. It is determined by their strength

and tune slope for amplitude as follows,

ΔJx = 2

√
Umx,0

Λ
Λ =

∂2U00

∂J2
x

. (22)

The resonance width is estimated for Gaussian distribu-

tion by analytic method, The tune slope ∂2U00/∂J
2
x is in-

duced by space charge potential. That of space charge is

dominant for that of nonlinear magnets as shown later. The

tune slope is evaluated by U00(Jx, Jy) in Eq.(23).

U00(Jx, Jy) =
λprp
β2γ3

∮
ds

∫ ∞

0

dη√
2 + η

√
2ryx + η

(1− e−wx−wyI0(wx)I0(wy)). (23)

where ryx = σ2
y/σ

2
x and

wx =
βxJx/σ

2
x

2 + η
. wy =

βyJy/σ
2
y

2 + η/ryx
. (24)

∂

∂Jx
=
βx/σ

2
x

2 + η

∂

∂wx
.

∂

∂Jy
=

βy/σ
2
x

2ryx + η

∂

∂wy
. (25)

The tune shift is given by derivative of U00 for Jxy as

follows,

2πΔνx = −∂U00

∂Jx

= − λprp
β2γ3

∮
ds
βx
σ2
x

∫ ∞

0

e−wx−wydη

(2 + η)3/2(2ryx + η)1/2

[(I0(wx)− I1(wx))I0(wy)] , (26)
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2πΔνy = −∂U00

∂Jy

= − λprp
β2γ3

∮
ds
βx
σ2
x

∫ ∞

0

e−wx−wydη

(2 + η)1/2(2ryx + η)3/2

[I0(wx)(I0(wy)− I1(wy))] . (27)

The tune slope is given by second derivative of U0 as

follows,

∂2U00

∂J2
x

= −2π ∂νx
∂Jx

(28)

=
λprp
β2γ3

∮
ds
β2
x

σ4
x

∫ ∞

0

e−wx−wydη

(2 + η)5/2(2ryx + η)1/2[{
3

2
I0(wx)− 2I1(wx) +

1

2
I2(wx)

}
I0(wy)

]
,

∂2U00

∂J2
x

= −2π ∂νx
∂Jy

= 2π
∂νy
∂Jx

=
λprp
β2γ3

∮
ds
βxβy
σ4
x

∫ ∞

0

e−wx−wydη

(2 + η)3/2(2ryx + η)3/2

[(I0(wx)− I1(wx))(I0(wy)− I1(wy))] , (29)

∂2U00

∂J2
y

= −2π ∂νy
∂Jy

(30)

=
λprp
β2γ3

∮
ds
β2
y

σ4
x

∫ ∞

0

e−wx−wydη

(2 + η)1/2(2ryx + η)5/2[
I0(wx)

{
3

2
I0(wy)− 2I1(wy) +

1

2
I2(wy)

}]
,

where I0(x)
′ = I1(x), I0(x)

′′ = (I0(x) + I2(x))/2 are

used.

Figure 11 shows tune spread (Δνx,y(Jx, Jy)), slope

(∂2U0/∂J
2
x), 4-th order resonance strength (U4,0) and its

width due to space charge force. The resonance width is

visible size, 0.2ε, when JR = ε.
Resonances and tune spread/slope are also induced by

nonlinear magnets. One turn map is expanded by 12-th

order polynomials. Taking at phase independent term, H00

is obtained as

.
(31)

Figure 12 shows the tune shift and slope. Typical tune slope

is ∂2H00/∂x
2 = 1000 ∼ 3000. This value is similar for

U00 at Jx = 32ε, namely tune slope of space charge is

dominant for that of lattice nonlinearity at J < 9ε(3σ),
vice versa.

Resonance strength due to lattice nonlinearity is ob-

tained by the one turn map. Table 1 shows the resonance
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Figure 11: Tune spread (Δνx,y(Jx, Jy)), slope

(∂2U0/∂x
2), 4-th order resonance strength (U4,0)

and its width due to space charge force as function of JR.

.

Table 1: Resonance width Under the Tune Slope Eq.(31)

width determined by resonance strength up to 4-th and the

tune slope, Eq.(31). The width is reduced by space charge

slope in Fig.11 depending on the resonant amplitude JR.

In simulation with the frozen model, resonance width

is seen in the phase space plot. Figure 13 shows the x
phase space plot for parabolic (top) and Gaussian (bottom)

beam, and compared with analitical estimate. Left and right

plots is given for ideal and error lattices, respectively, at

(νx, νy) = (21..38, 21.40). 4-th order resonance is seen in

parabolic, but not in Gaussian in ideal lattice. It is seen in

Gaussian beam for error lattice. The 4-th order resonance

is somewhat weaker than the previous estimation in Fig.11.

Figure 14 shows x phase space plot at (νx, νy) =
(22..41, 20.80). Top and bottom plots are for parabolic and

Gaussian beam, respectively. Left and right are for ideal

and error lattice, respectively. 3rd order resonance is seen.

Separatrix structure of 3rd order resonance is destroyed in

the error lattice. We guess this is due to x-y linear coupling
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Figure 12: Tune spread, ∂2H00/∂x
2 induced by lattice

nonlinearity.

Figure 13: Phase space plot given by frozen model simu-

lation for parabolic (top) and Gaussian (bottom) beam at

(νx, νy) = (21..38, 21.40). Left and right plots are for

ideal and error lattices, respectively.

resonance (νx + νy = 43). The two resonances excited si-

multaneously in this point.

TOY MODEL WITH THE TUNE SLOPE
AND RESONANCE STRENGTH

We study a model with a given tune slope and resonance

strength. This is an example of Hamiltonian,

H = μ0J +

(
J +

e−2aJ

2a

)
+ bJ cosmφ (32)

The tune shift is given by

μ =
∂H

∂J
= μ0 + (1− e−2aJ). (33)

Figure 14: Phase space plot at (νx, νy) = (22..41, 20.80).
Top and bottom plots are for parabolic and Gaussian beam,

respectively. Left and roght are for ideal and error lattice,

respectively.

For small amplitude tune shift 2aJ , where a > 0. The tune

slope is given by

∂2H

∂J2
= 2ae−2aJ . (34)

Half width of the resonance is expressed by

ΔJ =

√
2bJR

ae−2aJR
. (35)

Symplectic integration is performed by H(J, φ) as fol-

lows,

Jn+1 =
Jn

1− bm sinmφn
(36)

φn+1 = φn + μ+ (e−2aJn+1 − 1) + b cosmφn

where Jn and φn are those of n-th turn.

We study two cases of parameters,

• a = 0.5, b = 0.002, m = 4, μ = 2π × 0.203

• a = 0.5, b = 0.0002, m = 4, μ = 2π × 0.203

The resonance widths are given as (1) ΔJ = 0.07 and (2)

=0.02. The betatron amplitude, where the resonance hits,

is JR = 0.38.

The model is tracked using the two sets of parameters.

Figure 15 shows phase space trajectories. 4-the order res-

onance is seen, and their position (JR) and widths agree

with the formula, Eqs.(33) and (35)

Tune spread area modulates due to synchrotron oscilla-

tion. To study the effect, the strength of tune shift term a is

made a modulation as

a =
a0
2
(1 + cos 2πνsn). (37)

The resonant amplitude move to larger amplitude for small

a. The model does not match to space charge force in this
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Figure 15: Phase space trajectory for the model map,

Eq.(36). Left and right plots correspond to parameters (1)

and (2), respectively.

point. This model should be improved in the future. Fig-

ure 16 shows phase space plot taking into account of the

effective synchrotron motion. Chaotic area drastically in-

creases due to the synchrotron motion. Figure 17 shows the

emittance growth of the model with Eqs.(36) and (37). We

can see the emittance growth depending on the resonance

width.

Figure 16: Phase space trajectory for the model map taking

into account of effective synchrotron motion, Eqs.(36) and

(37). Left and right plots correspond to parameters (1) and

(2), respectively.
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Figure 17: Emittance growth of the model with Eqs.(36)

and (37).

SUMMARY

Noise of PIC simulation induces artificial emittance

growth. While collision offset noise in colliders, which

is similar situation in computer simulation, is real issue.

Noise of power supply ripple in J-PARC can be treated sim-

ilar way.

To avoid noise frozen model is used as cross check of

ordinary non-frozen model simulation. The model is lim-

ited to study incoherent emittance growth. Tools to study

the incoherent resonance effect is being prepared. Simple

toy model was executed to understand resonance phenom-

ena. Synchrotron motion is important for emittance growth

combined with the resonances.

Complex accelerator system with complex space charge

effects may be represented by simple several lines of

Hamiltonian, though simple accelerator system with fun-

dermental space charge effect is complex.

The author thanks fruitful discussions with Drs. H.

Harada, S. Igarashi, A. Molodozhentsev and Y. Sato.
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