
STATUS OF PY-ORBIT: BENCHMARKING AND NOISE CONTROL IN PIC
CODES *

J.A. Holmes, S. Cousineau, A. Shishlo, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract
PY-ORBIT is a broad collection of accelerator beam

dynamics simulation models, written primarily in C++, but
accessed by the user through Python scripts. PY-ORBIT
was conceived as a modernization, standardization, and
architectural improvement of ORBIT, a beam dynamics
code designed primarily for rings. Although this goal has
been substantially achieved, PY-ORBIT has additional
capabilities. A major consideration in high intensity beam
dynamics codes, such as PY-ORBIT and ORBIT, is the
simulation of space charge effects. Computational space
charge simulation is, of necessity, accompanied by noise
due to discretization errors, which can compromise results
over long time scales. Discretization errors occur due to
finite step sizes between space charge kicks, due to
graininess of the numerical space charge distribution, and
due to the effects of spatial grids embedded in certain
solvers. Most tracking codes use space charge solvers
containing some or all of these effects. We consider the
manifestation of discretization effects in different types of
space charge solvers with the object of long time scale
space charge simulation.

PY-ORBIT
PY-ORBIT [1] is a collection of computational beam

dynamics models for accelerators, designed to work
together in a common framework. It was started [2] as a
“friendly” version of the ORBIT Code [3], written using
publicly available supported software. Users run the code
using Python scripts and the higher-level routines are in
Python. The computationally intensive portions are written
in C++, except for the Polymorphic Tracking Code, PTC
[4], which is linked to PY-ORBIT and written in Fortran.
The C++ routines and PTC are wrapped to make them
available at the Python level. PY-ORBIT accommodates
multiprocessing through MPI. The only additional
software required by PY-ORBIT is the FFTW fast Fourier
transform library [5]. The code is finding an increasing
number of users and the source code is publicly available
via Google Codes [1]. It is not difficult for users to develop
extensions to PY-ORBIT, and it is possible for users to
obtain permission to add new routines to the publicly
available code. Recently, researchers at CERN and at GSI
have added new methods to PY-ORBIT.

At present, PY-ORBIT is capable of performing most
calculations that ORBIT does for rings and transfer lines.
Many of the most widely used methods in ORBIT have
been ported to PY-ORBIT and benchmarked. Single

* ORNL/SNS is managed by UT-Battelle, LLC, for the
U.S. Department of Energy under contract DE-AC05-
00OR22725.

particle tracking methods include ORBIT’s native
symplectic tracker, PTC tracking, and a 3D field tracker. It
is planned to add the option to use linear and second order
tracking by matrices from the MAD codes [6,7]. Space
charge models include ORBIT’s longitudinal, 2D potential
and direct force methods, a full 3D (not parallel) solver,
and uniform charge density 3D ellipses. A 2.5D solver has
recently been added and tested by Hannes Bartosik of
CERN. ORBIT’s longitudinal impedance model has also
been ported to PY-ORBIT, and we are now in the process
of porting the transverse impedance model. Other methods
that have been ported from ORBIT include injection, foil
and painting, RF cavities, collimation, apertures, and many
diagnostics.

Some capabilities have been developed in PY-ORBIT
that are not included in the original ORBIT code. Routines
have been developed for linac modeling, including RF
cavities, magnets, and 3D full Particle-in-Cell (PIC) and
elliptical space charge models. A detailed set of atomic
physics routines has been developed for laser stripping
applications, and special maps have been developed for
nonlinear optics studies. One ORBIT code package that has
not been ported to PY-ORBIT is the self-consistent
electron cloud model.

Detailed documentation of PY-ORBIT is, at best,
incomplete. In the downloaded source code there are many
examples that demonstrate the use of models in scripts.
Some of the methods are documented in Google Code
wikis. When in doubt, the user is advised to contact one of
the developers for detailed answers. Finally, some of the
nice features of PY-ORBIT come from the flexibility of
Python. For example, the bunch class is extendable. The
basic bunch contains only the 6D coordinates of each
macroparticle. It is easy, however, for the user to add
various properties, such as a particle index, spin, species,
ionization number, excited state, etc. Because of this
flexibility, it is easy and convenient to work with PY-
ORBIT.

SPACE CHARGE MODELING OVER
LONG TIMES

Particle-tracking simulations for accelerators involve
following particle distributions over time. Space charge
physics has been successfully incorporated into particle-
tracking studies of linacs, transfer lines, accumulator rings,
and rapid cycling synchrotrons (RCS). These space charge
models have allowed the successful simulation of
phenomena that would have been impossible otherwise.
Even so, the evaluation of space charge effects is typically

WEO2LR02 Proceedings of HB2014, East-Lansing, MI, USA

ISBN 978-3-95450-173-1

254C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Computational Challenges, New Concepts and New Projects

the most computationally intensive part of the simulation.
With the emergence of ever-higher beam intensities, it is
now necessary to incorporate space charge effects into
simulations of storage rings [8]. Calculations for storage
rings require tracking beams for far longer times than those
in linacs, accumulator rings, or rapid cycling synchrotrons.
These long time scales place severe requirements on the
speed and accuracy of the physics models and call for
innovative methods of solution. At long time scales, there
are also other effects besides space charge, such as lattice
imperfections and nonlinearities, wake forces, neutral gas
ionization and scattering, electron cloud interaction,
intrabeam scattering, beam loss, and others, that may be
critical. These effects are often relatively unimportant at
short or intermediate time scales. To study them in the
presence of space charge, it will be necessary to use an
accurate depiction of the space charge forces.

Space charge models attempt to account for the inter-
particle Coulomb force, and their evaluation requires the
solution of Poisson’s equation. The first issue in space
charge simulation is to choose a model that contains
physics sufficient to address the problem. The tools of
choice in most space charge simulations are fast Poisson
solvers of various dimensionalities that directly use the
tracked particle distribution to obtain the space charge
force. The speed of fast solvers scales as order O(~M),
where M is the number of macroparticles. The most
popular of these solvers are the PIC methods in which the
particle charges are distributed to a selected set of mesh
points. This is followed by the solution of the resulting
potential or forces at the mesh points using fast Fourier
transforms (FFTs), and then the interpolation of the forces
to the particle locations. Many PIC methods are described
in Refs. [9,10]. Another order O(~M) method is the fast
multipole method (FMM) [11], which expands the
individual particle potentials as multipoles at the centers of
a collection of square gridded cells containing the particles.
These expansions are then shifted and accumulated
through a hierarchy of coarser “parent cells” and the
resulting totals are converted to Taylor series expansions as
they are shifted backwards through the hierarchy of “child
cells”. The result is a set of local Taylor series expansions
in each initial cell for the potential and force due to the
particles in distant cells. The method uses pairwise force
evaluations for nearby particles to eliminate grid-based
discretization effects completely. The FMM solves the N-
body force evaluation to machine precision when enough
terms are retained in the multipole and Taylor series
expansions. Even so, there are discretization effects due to
the time step and the numerical particle distribution.

For long time scale calculations, the appropriate choice
is usually a 2D or 2.5D transverse solver. The latter choice
is necessary when transverse properties vary longitudinally
along the beam or when transverse impedances are of
interest. These solvers can be used in conjunction with a
separate 1D longitudinal model, since longitudinal
evolution typically occurs much more slowly. However,
some 2.5D solvers also incorporate the longitudinal force.
The above models are valid only for long bunches in which

the bunch length greatly exceeds the beam pipe radius, as
is normally the case in proton storage rings. For short
bunches where the longitudinal and transverse dimensions
are comparable, such as those found in linacs, it is
necessary to use full 3D space charge models.
Computational requirements rise steeply with the
dimensionality of the model, so it is important to adopt the
simplest model that contains the necessary physics.

Important issues that determine the applicability of space
charge models are their ability to represent the beam
distribution, nonphysical effects associated with the
algorithm, and their computational speed. Before
discussing the pros and cons of specific approaches, it is
important to consider the nonphysical effects. These effects
are the result of discretization errors due to finite time step
size, the coarseness of the computational particle
distribution, and the use of finite spatial grids. Time
discretization is a feature of any space charge simulation,
regardless of beam representation. While space charge
forces act continuously in classical dynamics, simulations
apply them as impulses, separated by single particle
transport. At the very least, it is necessary to include many
space charge evaluations per betatron or synchrotron
oscillation. Further discretization errors occur when the
tracked particles are used directly to provide the
charge/current distribution. Real accelerator bunches
typically have orders of magnitude more particles than
bunches used in simulations. This results in an increased
graininess of the force distribution and an increased
potential for large binary collisions in simulations. Both of
these effects introduce noise, or diffusion, into the particle
evolution. The problem of the enhanced binary collisions
is often handled by introducing artificial smoothing
parameters into the inter-particle force Green’s functions.
A final source of discretization in many PIC methods
relates to the use of spatial meshes. However, because of
the particle binning and force evaluation algorithms used
in PIC models, gridding actually provides a smoothing of
the local space charge forces. Before realizing this to be the
case, we implemented an FMM solver in ORBIT in order
to eliminate grid-based numerical effects. However, we
discovered that, unless we introduced a smoothing
parameter to the pairwise Coulomb force function,
numerical diffusion was stronger than in the grid-based
FFT methods. However, through the adjustment of the
smoothing parameter, we were able to achieve answers and
emittance growth rates comparable to those of FFT
methods. Figure 1 compares RMS emittance evolution
from FFT and FMM simulations with 105 macroparticles
for a KV distributions and a uniform focusing lattice. The
period for one bare tune betatron oscillation is 50 meters,
and the space charge tune shift is one third of the bare tune.
The results are shown for 100 bare tune betatron
oscillations, or 5000 meters. The FMM calculations are
carried out alternatively with no smoothing and with an
interparticle force smoothing parameter of 0.03 mm.
Clearly, numerical scattering leads to emmitance growth in
the unsmoothed FMM calculation, and it is necessary to
include the smoothing parameter to eliminate the

Proceedings of HB2014, East-Lansing, MI, USA WEO2LR02

Computational Challenges, New Concepts and New Projects

ISBN 978-3-95450-173-1

255 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

scattering. The grid and binning procedures provide this
smoothing in the FFT approach. The FMM approach was
abandoned because it provided no physics advantage over
FFT methods and also because it ran a factor of ten to fifty
times more slowly on sample problems, depending on
parameter settings.

Figure 1: RMS emittance evolution for FFT and smoothed
and unsmoothed FMM calculations.

In statistical and plasma physics collisions have been

long characterized in terms of diffusion operators. In Ref.
[12], a Fokker-Planck analysis was used to characterize
entropy growth due to collisions and other stochastic
processes in particle beams. More recently, this work was
adapted to develop and successfully test an empirical
scaling law for the collision frequency and subsequent
emittance growth due to space charge in computer
simulations [13]. The work in Ref. [13] was carried out for
2D space charge in FODO channels, and the results are
therefore applicable to the case of PIC simulation in
storage rings. From the standpoint of space charge
modeling over long time scales, the essential result is that
the numerical collision frequency scales as

ߥ ∝
ܰଶ

ܯ
ሺ1 െ

߂
ߣ
ሻ

Here N is the beam intensity or number of physical
particles, M is the number of macroparticles, Δ is the
macroparticle size (smoothing length or grid spacing in
PIC methods), and λ is a cutoff parameter. The collision
frequency ν is directly related to the entropy and emittance
growth of the beam. Thus, the rate of emittance growth
increases as the square of the intensity and inversely with
the number of macroparticles. The effect of finite grid or
smoothing parameter size reduces the growth. Figure 2a
shows the effect of grid smoothing on emittance growth for
the same case as in Fig. 1, except that now the calculation
is carried out for 1000 bare tune oscillations. Figure 2b
shows the reduction in emittance growth due to increasing
number of macroparticles.

Figure 2: RMS emittance evolution for FFT PIC solver
with a) two different grid sizes and b) different numbers of
macroparticles.

Given the results of Ref [13], we are now prepared to

consider the choice of space charge model for long time
scale simulations. Direct use of the distribution of tracked
macroparticles to obtain the space charge forces has been
the method of choice in previous simulations of linacs,
transfer lines, accumulator rings, and RCS. These methods
are preferred in that they provide a faithful representation
of the beam distribution, which is often complex in real
accelerators. In these previous applications it was possible
to use enough macroparticles M to suppress the stochastic
numerical emittance growth and carry out the calculation
with a moderate amount of computer resources. Such
simulations could typically be done on small clusters or
even individual workstations. However, time scales for
storage rings are orders of magnitude longer than those for
linacs and small rings, and the above scaling law suggests
that the number of macroparticles necessary to limit
numerical emittance growth could become prohibitively
large. Thus, the direct extension of PIC solution techniques
to storage ring applications is likely to be extremely
expensive from a computational standpoint, and may
demand the use of massively powerful parallel
supercomputers.

Thus we arrive at the following question: Is there any
alternative to massively parallel computing for studying
the effects of space charge in storage rings? The answer

WEO2LR02 Proceedings of HB2014, East-Lansing, MI, USA

ISBN 978-3-95450-173-1

256C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Computational Challenges, New Concepts and New Projects

may be some simplified smooth or analytic representation
of the space charge force. One drawback of such an
approach is that it implies a limited ability to represent the
actual beam distribution. One extreme example, called the
envelope or particle core model, represents the space
charge distribution as a uniform ellipsoidal core that
propagates according to the envelope equation. The
tracked particles feel the space charge force due to the
propagating core. This force is linear inside the core.
Envelope models are computationally fast and easy to
apply. They have been used to support theoretical studies
of halo generation by mismatched beams and also the
approach to the half integer resonance. One limitation of
such models is that a constant emittance is specified in the
envelope and thus constrains the evolution of the core.
Accordingly, envelope models are simple, but far from
realistic. One can envision intermediate classes of methods
for handling space charge through the use of analytic or
smoothed distributions, where the parameters are fitted to
those of a tracked macroparticle bunch beam. Such hybrid
methods could, in principle, enjoy the speed and simplicity
of envelope models, have parameters that evolve with the
tracked beam distribution, and eliminate the noise
associated with the graininess of the particle distribution.

BENCHMARKING OF SPACE CHARGE
MODELS

As with all numerical simulation tools, it is essential to
benchmark space charge routines. During its fifteen years
of existence, ORBIT has been extensively benchmarked,
including all its space charge models. Benchmark tests
have included comparisons with analytic results, with
experimental observations, and with other codes. PY-
ORBIT has been thoroughly benchmarked with ORBIT as
models have been completed and tested. From this
standpoint, we place the same confidence in the models in
PY-ORBIT that we have in ORBIT.

There are also formal benchmark tests for space charge
routines. An excellent suite of benchmarks on several time
scales involves space charge induced resonance trapping,
and can be found in Ref. [14]. ORBIT has successfully
completed eight of the nine benchmarks on this site, and
the final case is under study. Some of the longer time scale
tests, as posed on the site, are accompanied by significant
numerically-induced emittance growth. Because of this,
results in some cases are very sensitive to the parameters
used in the calculation. This sensitivity is illustrated in Fig.
3, which shows the emittance evolution with resonant
trapping and detrapping over one synchrotron oscillation
for two initially close test particles. The particle plotted in
red is trapped on both halves of the oscillation, while the
blue particle escapes trapping on the second half
oscillation.

Figure 3: Emittance evolution for two nearly identical
particles in resonance trapping benchmark.

CONCLUSION
PY-ORBIT has matured to the point that it can be

applied to almost all the problems accessible to ORBIT.
The source code is publicly available and easy to use via
Python scripts. Users are welcome to develop their own
models in PY-ORBIT, either in Python for high-level
models or C++ for computationally intensive routines. PY-
ORBIT code is carefully benchmarked with ORBIT before
being made available to the public.

In considering the choice of space charge model for a
given application, the relevant issues involve
representation of the beam, numerical fidelity with physics,
and computational speed. For short to intermediate time
scales occurring in linacs, transfer lines, accumulators, and
RCS, FFT-based PIC methods of appropriate
dimensionality have been the choice. For storage rings,
which typically have long bunch length, 2D and 2.5D
models are appropriate. For applying such models on long
time scales, it is necessary to account for the effects of
numerical collisionality on entropy and emittance growth.
These effects were studied in Ref. [13] and a simple
empirical scaling law was obtained. This law provides
guidance on the necessary number of macroparticles, grid
spacing, and therefore computer resources to address a
given problem. If, for some applications, the necessary
resources are prohibitive, it is worthwhile to consider
whether a simpler, fast, analytically based approach might
suffice.

Benchmarking is always an essential step in validating
new code. PY-ORBIT has been carefully benchmarked
with ORBIT during its development, and ORBIT has been
extensively benchmarked with analytic, experimental, and
other code results. Finally, sensitivity of results must be
considered in any benchmarking activity, especially when
long time scales are involved. If small differences in input
can lead to large differences in output, and if different
codes agree on this, then care must be taken on interpreting
the meaning of the benchmark results.

Proceedings of HB2014, East-Lansing, MI, USA WEO2LR02

Computational Challenges, New Concepts and New Projects

ISBN 978-3-95450-173-1

257 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

ACKNOWLEDGMENT
ORNL/SNS is managed by UT-Battelle, LLC, for the

U.S. Department of Energy under contract DE-AC05-
00OR22725.

REFERENCES
[1] Pubicly available at Google Codes by typing: svn

checkout https://py-orbit.googlecode.com/svn/trunk
py-orbit --username youraccount@gmail.com

[2] A. Shishlo, T. Gorlov, J. Holmes, in Proceedings of
the International Computatonal Particle Accelerator
Conference (ICAP 09), San Francisco, 2009.

[3] J.A. Holmes, S. Cousineau, V.V. Danilov, S.
Henderson, A. Shishlo, Y. Sato, W. Chou, L.
Michelotti, F. Ostiguy, in The ICFA Beam Dynamics
Newsletter, Vol. 30, 2003.

[4] E. Forest, E. McIntosh, F. Schmidt, ``Introduction to
the Polymorphic Tracking Code: Fibre Bundles,
Polymorphic Taylor Types and "Exact Tracking"'',
CERN-SL-2002-044 (AP), KEK Report 2002-3.

[5] FFTW Home Page. http://www.fftw.org

[6] H. Grote, F. C. Iselin, CERN/SL/90-13 (AP) (Rev. 5)
(1996).

[7] MAD-X Home Page,
http://frs.home.cern.ch/frs/Xdoc/mad-X.html

[8] Space Charge 2014, CERN, May 20-21, 2014,
https://indico.cern.ch/event/292362

[9] R. W. Hockney and J. W. Eastwood, “Computer
Simulation Using Particles”, Institute of Physics
Publishing, Bristol, 1988.

[10] J. Demmel, NSF-CBMS Short Course on Parallel
Numerical Linear Algebra, especially Lectures 24-27,
http://www.cs.berkeley.edu/~demmel/cs267-1995/

[11] L. Greengard and V. Rokhlin, “A Fast Algorithm for
Particle Simulations”, Journal of Computational
Physics 73, (1987), 325.

[12] Jurgen Struckmeier, Phys. Rev. E 54, 830, (1996).
[13] O. Boine-Frankenheim, I. Hofmann, J. Struckmeier, S.

Appel, Nucl. Instr. and Meth. in Phys.Research A., in
press.

[14] G. Franchetti, Code Benchmarking on Space Charge
Induced Trapping, http://web-docs.gsi.de/~giuliano/

WEO2LR02 Proceedings of HB2014, East-Lansing, MI, USA

ISBN 978-3-95450-173-1

258C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Computational Challenges, New Concepts and New Projects

