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Abstract 
PY-ORBIT is a broad collection of accelerator beam 

dynamics simulation models, written primarily in C++, but 
accessed by the user through Python scripts. PY-ORBIT 
was conceived as a modernization, standardization, and 
architectural improvement of ORBIT, a beam dynamics 
code designed primarily for rings. Although this goal has 
been substantially achieved, PY-ORBIT has additional 
capabilities. A major consideration in high intensity beam 
dynamics codes, such as PY-ORBIT and ORBIT, is the 
simulation of space charge effects. Computational space 
charge simulation is, of necessity, accompanied by noise 
due to discretization errors, which can compromise results 
over long time scales. Discretization errors occur due to 
finite step sizes between space charge kicks, due to 
graininess of the numerical space charge distribution, and 
due to the effects of spatial grids embedded in certain 
solvers. Most tracking codes use space charge solvers 
containing some or all of these effects. We consider the 
manifestation of discretization effects in different types of 
space charge solvers with the object of long time scale 
space charge simulation. 

PY-ORBIT 
PY-ORBIT [1] is a collection of computational beam 

dynamics models for accelerators, designed to work 
together in a common framework. It was started [2] as a 
“friendly” version of the ORBIT Code [3], written using 
publicly available supported software. Users run the code 
using Python scripts and the higher-level routines are in 
Python. The computationally intensive portions are written 
in C++, except for the Polymorphic Tracking Code, PTC 
[4], which is linked to PY-ORBIT and written in Fortran. 
The C++ routines and PTC are wrapped to make them 
available at the Python level. PY-ORBIT accommodates 
multiprocessing through MPI. The only additional 
software required by PY-ORBIT is the FFTW fast Fourier 
transform library [5]. The code is finding an increasing 
number of users and the source code is publicly available 
via Google Codes [1]. It is not difficult for users to develop 
extensions to PY-ORBIT, and it is possible for users to 
obtain permission to add new routines to the publicly 
available code. Recently, researchers at CERN and at GSI 
have added new methods to PY-ORBIT. 

At present, PY-ORBIT is capable of performing most 
calculations that ORBIT does for rings and transfer lines. 
Many of the most widely used methods in ORBIT have 
been ported to PY-ORBIT and benchmarked. Single 
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particle tracking methods include ORBIT’s native 
symplectic tracker, PTC tracking, and a 3D field tracker. It 
is planned to add the option to use linear and second order 
tracking by matrices from the MAD codes [6,7]. Space 
charge models include ORBIT’s longitudinal, 2D potential 
and direct force methods, a full 3D (not parallel) solver, 
and uniform charge density 3D ellipses. A 2.5D solver has 
recently been added and tested by Hannes Bartosik of 
CERN. ORBIT’s longitudinal impedance model has also 
been ported to PY-ORBIT, and we are now in the process 
of porting the transverse impedance model. Other methods 
that have been ported from ORBIT include injection, foil 
and painting, RF cavities, collimation, apertures, and many 
diagnostics. 

Some capabilities have been developed in PY-ORBIT 
that are not included in the original ORBIT code. Routines 
have been developed for linac modeling, including RF 
cavities, magnets, and 3D full Particle-in-Cell (PIC) and 
elliptical space charge models. A detailed set of atomic 
physics routines has been developed for laser stripping 
applications, and special maps have been developed for 
nonlinear optics studies. One ORBIT code package that has 
not been ported to PY-ORBIT is the self-consistent 
electron cloud model. 

Detailed documentation of PY-ORBIT is, at best, 
incomplete. In the downloaded source code there are many 
examples that demonstrate the use of models in scripts. 
Some of the methods are documented in Google Code 
wikis. When in doubt, the user is advised to contact one of 
the developers for detailed answers. Finally, some of the 
nice features of PY-ORBIT come from the flexibility of 
Python. For example, the bunch class is extendable. The 
basic bunch contains only the 6D coordinates of each 
macroparticle. It is easy, however, for the user to add 
various properties, such as a particle index, spin, species, 
ionization number, excited state, etc. Because of this 
flexibility, it is easy and convenient to work with PY-
ORBIT. 

SPACE CHARGE MODELING OVER 
LONG TIMES 

Particle-tracking simulations for accelerators involve 
following particle distributions over time. Space charge 
physics has been successfully incorporated into particle-
tracking studies of linacs, transfer lines, accumulator rings, 
and rapid cycling synchrotrons (RCS). These space charge 
models have allowed the successful simulation of 
phenomena that would have been impossible otherwise. 
Even so, the evaluation of space charge effects is typically 
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the most computationally intensive part of the simulation. 
With the emergence of ever-higher beam intensities, it is 
now necessary to incorporate space charge effects into 
simulations of storage rings [8]. Calculations for storage 
rings require tracking beams for far longer times than those 
in linacs, accumulator rings, or rapid cycling synchrotrons. 
These long time scales place severe requirements on the 
speed and accuracy of the physics models and call for 
innovative methods of solution. At long time scales, there 
are also other effects besides space charge, such as lattice 
imperfections and nonlinearities, wake forces, neutral gas 
ionization and scattering, electron cloud interaction, 
intrabeam scattering, beam loss, and others, that may be 
critical. These effects are often relatively unimportant at 
short or intermediate time scales. To study them in the 
presence of space charge, it will be necessary to use an 
accurate depiction of the space charge forces. 

Space charge models attempt to account for the inter-
particle Coulomb force, and their evaluation requires the 
solution of Poisson’s equation. The first issue in space 
charge simulation is to choose a model that contains 
physics sufficient to address the problem. The tools of 
choice in most space charge simulations are fast Poisson 
solvers of various dimensionalities that directly use the 
tracked particle distribution to obtain the space charge 
force. The speed of fast solvers scales as order O(~M), 
where M is the number of macroparticles. The most 
popular of these solvers are the PIC methods in which the 
particle charges are distributed to a selected set of mesh 
points. This is followed by the solution of the resulting 
potential or forces at the mesh points using fast Fourier 
transforms (FFTs), and then the interpolation of the forces 
to the particle locations. Many PIC methods are described 
in Refs. [9,10]. Another order O(~M) method is the fast 
multipole method (FMM) [11], which expands the 
individual particle potentials as multipoles at the centers of 
a collection of square gridded cells containing the particles. 
These expansions are then shifted and accumulated 
through a hierarchy of coarser “parent cells” and the 
resulting totals are converted to Taylor series expansions as 
they are shifted backwards through the hierarchy of “child 
cells”. The result is a set of local Taylor series expansions 
in each initial cell for the potential and force due to the 
particles in distant cells. The method uses pairwise force 
evaluations for nearby particles to eliminate grid-based 
discretization effects completely. The FMM solves the N-
body force evaluation to machine precision when enough 
terms are retained in the multipole and Taylor series 
expansions. Even so, there are discretization effects due to 
the time step and the numerical particle distribution. 

For long time scale calculations, the appropriate choice 
is usually a 2D or 2.5D transverse solver. The latter choice 
is necessary when transverse properties vary longitudinally 
along the beam or when transverse impedances are of 
interest. These solvers can be used in conjunction with a 
separate 1D longitudinal model, since longitudinal 
evolution typically occurs much more slowly. However, 
some 2.5D solvers also incorporate the longitudinal force. 
The above models are valid only for long bunches in which 

the bunch length greatly exceeds the beam pipe radius, as 
is normally the case in proton storage rings. For short 
bunches where the longitudinal and transverse dimensions 
are comparable, such as those found in linacs, it is 
necessary to use full 3D space charge models. 
Computational requirements rise steeply with the 
dimensionality of the model, so it is important to adopt the 
simplest model that contains the necessary physics. 

Important issues that determine the applicability of space 
charge models are their ability to represent the beam 
distribution, nonphysical effects associated with the 
algorithm, and their computational speed. Before 
discussing the pros and cons of specific approaches, it is 
important to consider the nonphysical effects. These effects 
are the result of discretization errors due to finite time step 
size, the coarseness of the computational particle 
distribution, and the use of finite spatial grids. Time 
discretization is a feature of any space charge simulation, 
regardless of beam representation. While space charge 
forces act continuously in classical dynamics, simulations 
apply them as impulses, separated by single particle 
transport. At the very least, it is necessary to include many 
space charge evaluations per betatron or synchrotron 
oscillation. Further discretization errors occur when the 
tracked particles are used directly to provide the 
charge/current distribution. Real accelerator bunches 
typically have orders of magnitude more particles than 
bunches used in simulations. This results in an increased 
graininess of the force distribution and an increased 
potential for large binary collisions in simulations. Both of 
these effects introduce noise, or diffusion, into the particle 
evolution. The problem of the enhanced binary collisions 
is often handled by introducing artificial smoothing 
parameters into the inter-particle force Green’s functions. 
A final source of discretization in many PIC methods 
relates to the use of spatial meshes. However, because of 
the particle binning and force evaluation algorithms used 
in PIC models, gridding actually provides a smoothing of 
the local space charge forces. Before realizing this to be the 
case, we implemented an FMM solver in ORBIT in order 
to eliminate grid-based numerical effects. However, we 
discovered that, unless we introduced a smoothing 
parameter to the pairwise Coulomb force function, 
numerical diffusion was stronger than in the grid-based 
FFT methods. However, through the adjustment of the 
smoothing parameter, we were able to achieve answers and 
emittance growth rates comparable to those of FFT 
methods. Figure 1 compares RMS emittance evolution 
from FFT and FMM simulations with 105 macroparticles 
for a KV distributions and a uniform focusing lattice. The 
period for one bare tune betatron oscillation is 50 meters, 
and the space charge tune shift is one third of the bare tune. 
The results are shown for 100 bare tune betatron 
oscillations, or 5000 meters. The FMM calculations are 
carried out alternatively with no smoothing and with an 
interparticle force smoothing parameter of 0.03 mm. 
Clearly, numerical scattering leads to emmitance growth in 
the unsmoothed FMM calculation, and it is necessary to 
include the smoothing parameter to eliminate the 
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scattering. The grid and binning procedures provide this 
smoothing in the FFT approach. The FMM approach was 
abandoned because it provided no physics advantage over 
FFT methods and also because it ran a factor of ten to fifty 
times more slowly on sample problems, depending on 
parameter settings. 

 

 
Figure 1: RMS emittance evolution for FFT and smoothed 
and unsmoothed FMM calculations. 

 
In statistical and plasma physics collisions have been 

long characterized in terms of diffusion operators. In Ref. 
[12], a Fokker-Planck analysis was used to characterize 
entropy growth due to collisions and other stochastic 
processes in particle beams. More recently, this work was 
adapted to develop and successfully test an empirical 
scaling law for the collision frequency and subsequent 
emittance growth due to space charge in computer 
simulations [13]. The work in Ref. [13] was carried out for 
2D space charge in FODO channels, and the results are 
therefore applicable to the case of PIC simulation in 
storage rings. From the standpoint of space charge 
modeling over long time scales, the essential result is that 
the numerical collision frequency scales as 
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Here N is the beam intensity or number of physical 
particles, M is the number of macroparticles, Δ is the 
macroparticle size (smoothing length or grid spacing in 
PIC methods), and λ is a cutoff parameter. The collision 
frequency ν is directly related to the entropy and emittance 
growth of the beam. Thus, the rate of emittance growth 
increases as the square of the intensity and inversely with 
the number of macroparticles. The effect of finite grid or 
smoothing parameter size reduces the growth. Figure 2a 
shows the effect of grid smoothing on emittance growth for 
the same case as in Fig. 1, except that now the calculation 
is carried out for 1000 bare tune oscillations. Figure 2b 
shows the reduction in emittance growth due to increasing 
number of macroparticles. 

 

 

 
Figure 2: RMS emittance evolution for FFT PIC solver 
with a) two different grid sizes and b) different numbers of 
macroparticles. 

 
Given the results of Ref [13], we are now prepared to 

consider the choice of space charge model for long time 
scale simulations. Direct use of the distribution of tracked 
macroparticles to obtain the space charge forces has been 
the method of choice in previous simulations of linacs, 
transfer lines, accumulator rings, and RCS. These methods 
are preferred in that they provide a faithful representation 
of the beam distribution, which is often complex in real 
accelerators. In these previous applications it was possible 
to use enough macroparticles M to suppress the stochastic 
numerical emittance growth and carry out the calculation 
with a moderate amount of computer resources. Such 
simulations could typically be done on small clusters or 
even individual workstations. However, time scales for 
storage rings are orders of magnitude longer than those for 
linacs and small rings, and the above scaling law suggests 
that the number of macroparticles necessary to limit 
numerical emittance growth could become prohibitively 
large. Thus, the direct extension of PIC solution techniques 
to storage ring applications is likely to be extremely 
expensive from a computational standpoint, and may 
demand the use of massively powerful parallel 
supercomputers. 

Thus we arrive at the following question: Is there any 
alternative to massively parallel computing for studying 
the effects of space charge in storage rings? The answer 
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may be some simplified smooth or analytic representation 
of the space charge force. One drawback of such an 
approach is that it implies a limited ability to represent the 
actual beam distribution. One extreme example, called the 
envelope or particle core model, represents the space 
charge distribution as a uniform ellipsoidal core that 
propagates according to the envelope equation. The 
tracked particles feel the space charge force due to the 
propagating core. This force is linear inside the core. 
Envelope models are computationally fast and easy to 
apply. They have been used to support theoretical studies 
of halo generation by mismatched beams and also the 
approach to the half integer resonance. One limitation of 
such models is that a constant emittance is specified in the 
envelope and thus constrains the evolution of the core. 
Accordingly, envelope models are simple, but far from 
realistic. One can envision intermediate classes of methods 
for handling space charge through the use of analytic or 
smoothed distributions, where the parameters are fitted to 
those of a tracked macroparticle bunch beam. Such hybrid 
methods could, in principle, enjoy the speed and simplicity 
of envelope models, have parameters that evolve with the 
tracked beam distribution, and eliminate the noise 
associated with the graininess of the particle distribution. 

BENCHMARKING OF SPACE CHARGE 
MODELS 

As with all numerical simulation tools, it is essential to 
benchmark space charge routines. During its fifteen years 
of existence, ORBIT has been extensively benchmarked, 
including all its space charge models. Benchmark tests 
have included comparisons with analytic results, with 
experimental observations, and with other codes. PY-
ORBIT has been thoroughly benchmarked with ORBIT as 
models have been completed and tested. From this 
standpoint, we place the same confidence in the models in 
PY-ORBIT that we have in ORBIT. 

There are also formal benchmark tests for space charge 
routines. An excellent suite of benchmarks on several time 
scales involves space charge induced resonance trapping, 
and can be found in Ref. [14]. ORBIT has successfully 
completed eight of the nine benchmarks on this site, and 
the final case is under study. Some of the longer time scale 
tests, as posed on the site, are accompanied by significant 
numerically-induced emittance growth. Because of this, 
results in some cases are very sensitive to the parameters 
used in the calculation. This sensitivity is illustrated in Fig. 
3, which shows the emittance evolution with resonant 
trapping and detrapping over one synchrotron oscillation 
for two initially close test particles. The particle plotted in 
red is trapped on both halves of the oscillation, while the 
blue particle escapes trapping on the second half 
oscillation. 

 

 
Figure 3: Emittance evolution for two nearly identical 
particles in resonance trapping benchmark. 

CONCLUSION 
PY-ORBIT has matured to the point that it can be 

applied to almost all the problems accessible to ORBIT. 
The source code is publicly available and easy to use via 
Python scripts. Users are welcome to develop their own 
models in PY-ORBIT, either in Python for high-level 
models or C++ for computationally intensive routines. PY-
ORBIT code is carefully benchmarked with ORBIT before 
being made available to the public. 

In considering the choice of space charge model for a 
given application, the relevant issues involve 
representation of the beam, numerical fidelity with physics, 
and computational speed. For short to intermediate time 
scales occurring in linacs, transfer lines, accumulators, and 
RCS, FFT-based PIC methods of appropriate 
dimensionality have been the choice. For storage rings, 
which typically have long bunch length, 2D and 2.5D 
models are appropriate. For applying such models on long 
time scales, it is necessary to account for the effects of 
numerical collisionality on entropy and emittance growth. 
These effects were studied in Ref. [13] and a simple 
empirical scaling law was obtained. This law provides 
guidance on the necessary number of macroparticles, grid 
spacing, and therefore computer resources to address a 
given problem. If, for some applications, the necessary 
resources are prohibitive, it is worthwhile to consider 
whether a simpler, fast, analytically based approach might 
suffice. 

Benchmarking is always an essential step in validating 
new code. PY-ORBIT has been carefully benchmarked 
with ORBIT during its development, and ORBIT has been 
extensively benchmarked with analytic, experimental, and 
other code results. Finally, sensitivity of results must be 
considered in any benchmarking activity, especially when 
long time scales are involved. If small differences in input 
can lead to large differences in output, and if different 
codes agree on this, then care must be taken on interpreting 
the meaning of the benchmark results. 
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