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Abstract
The coherent stability problem for proton and heavy ion

beams is reviewed. For all but the highest energies space

charge is the dominant coherent force. While space charge

alone appear benign its interaction with other impedances

is less clear. The main assumptions used in calculations

and their justifications will be reviewed. Transverse beam

transfer function data from RHIC will be used to compare

theory and experiment and some pitfalls will be discussed.

MODELING THE TRANSVERSE FORCE
The effect of space charge on longitudinal instabilites goes

back to early work on the negative mass instability [1]. Early

work on coasting beam transverse instabilities included the

effect of space charge as well [2]. Both these treatments

used a leading order approximation with a longitudinal force

proportional to the derivative of the instantaneous current

and a transverse force

Fx = κI (τ)[x − x̄(τ, t)] (1)

where τ is the particle arrival time with respect to the syn-
chronous particle, t is time, I (τ) is the instantaneous current,
x is the transverse coordinate and x̄(τ, t) is the transverse
centroid position as a function of longitudinal coordinate

and time. The constant κ depends on the beam radius. There

are several assumptions [3]:

1. The fields are electrostatic in the comoving frame.

2. The wavelength of perturbations in the comoving frame

are long compared to the beam radius.

3. The unperturbed transverse distribution is KV, resulting

in a constant density within the beam at a given τ.
4. First order perturbation theory is used.

5. The fields due to boundary conditions are neglected.

For small perturbations the nonlinearities due to images

do not depend on the beam dynamics and will be subsumed

in a generic octupolar force. For direct space charge actual

beams are generally not KV and the accuracy of Eq. (1) has

been studied in [4–8] within the context of coasting beams.

It was found that the nonlinearity due to direct space charge

is relevant only when other forms of damping are present.

Space charge enhances damping due to lattice nonlinear-

ity if the betatron tune increases with betatron amplitude.

Changing the sign results in less damping that without space

charge. The tune shift with amplitude due to short strong

quadrupoles has the right sign and works in both planes [9].

Figures 1 and 2 show threshold diagrams where ΔQ0

is the complex tune shift an undamped beam would have.
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Figure 1: Threshold diagrams for tune spread due to chro-

matic tune spread with space charge. Average space tune

shifts are quoted and the rms chromatic tune spread is 0.1.

Stable tune shifts for damped beams are below the curves.

The unperturbed transverse action distribution is F0(J) =
(3/J0)(1 − J/J0)2 and space charge is modeled as an inter-
particle force containing linear and cubic terms [3]. The

ratio of the tune spread to the average tune shift matches

that for a round gaussian beam. These solutions are for

one dimensional motion and the expresion for the theshold

impedance as a function of coherent beam tune is a rational

function of three different dispersion integrals [5][Eq. (31)].

As is clear from the plots these effects are important if true

and we go on to test them with particle tracking.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-0.3 -0.2 -0.1  0  0.1

Im
(Δ

Q
0)

Re(ΔQ0)

ΔQsc=0.00, ΔQoct=|0.1|
ΔQsc=0.1, ΔQoct=-0.1

ΔQsc=0.1, ΔQoct=+0.1

Figure 2: Threshold diagrams for tune spread due to oc-

tupoles with space charge. Average space charge and oc-

tupolar tune shifts are quoted and a chromatic tune spread

of 0.01 is also included.

When both transverse dimensions are included and the

space charge is modeled more accurately, certain forms of
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Figure 3: Initial particle distribution and space charge

smoothing function used in simulations. 50,000 particles

were tracked. Increasing the number of particles by a factor

of 5 and increasing the update rate by a factor of 5 had no

significant impact.

 0

 2000

 4000

 6000

 8000

 10000

-0.03 -0.02 -0.01  0  0.01

N
/b

in

Q-Q0

ΔQsc
δQchrom

δQoct

Figure 4: Tune distributions used in the tracking.

the dispersion relation have been conjectured [4, 7, 8] but

reliable solutions appear to require tracking. Consider the

simple model

dpx j

dθ
+Qx x j = Co x j (x2j + p2x j ) − δQ j x j (2)

+ Csc

Np∑
m=1

x j − xm
ε2 + (x j − xm )2 + (y j − ym )2

+
2

Np

Np∑
m=1

Im(ΔQ0)pxm − Re(ΔQ0)xm

dx j

dθ
−Qxpx j = −Copx j (x2j + p2x j ) + δQ j px j . (3)

In the first lines of Eq. (2) and (3) θ is the azimuth which in-
creases by 2π each turn, Qx is the bare horizontal tune, δQ j

is the chromatic tune shift for particle j andCo characterizes

the strength of the octupolar tune shift. In the second line

of Eq. (2) Csc characterizes the strength of the space charge

force with smoothing length ε . The third line of Eq. (2)
contains the impedance like forces. For no tune spread the

beam centroid oscillates with real tune Qx + Re(ΔQ0) and
grows in amplitude by exp[2πIm(ΔQ0)] each turn. The y
direction has a different central tune and no ΔQ0 terms.

Figure 3 shows inital particle distributions and the smooth-

ing fucntion used in the space charge calculations. The initial

phase space distribution was matched to (1− x2 − y2 − p2x −
p2y )2 and 50,000 particles were tracked with 30 updates per
betatron oscillation. Increasing the number of particles to

250,000 or increasing the update rate to 150 updates per

oscillation had no significant effect on collective modes. Be-

fore considering detuning with amplitude we focus on the

simpler chromatic tune spreads. Figure 4 shows the tune

distributions for chromaticity induced tune spread and space

charge tune spread. Octupolar detuning will be considered

later and initially we drop space charge also, yielding purely

linear equations of motion. Figure 5 shows emittance as a

function of time within the stability boundary for a beam

with Im(ΔQ0) = 0.0002. The magenta curve has fractional
emittance growth per turn exp(4πIm(ΔQ0)/Np ) and follows
from a stochastic cooling model [10].

Figure 6 shows the observed growth rate as a function

of the real tune shift induced by a wall impedance. The

space charge force was evaluated using a fast fourier trans-

form convolution algorithm with a 128 by 128 grid on the

beam and a double up procedure to avoid image forces. The

blue and red curves in Figure 6 are the similar but when

more turns are tracked instabilites can occur later. This is

shown in the magenta curve. It is clear that the tracking

results do not show the increased region of stability shown

in Figure 1. Simulations employing octupolar damping are

shown in Figure 7. As is clear from the figure the threshold

value of the wall impedance depends on the number of turns

tracked. While there is generally a slow, secular increase

in the transverse emittance the growth rates were from data

before significant emittance growth occured. Both Figures 6

and 7 show behavior typical of extended tracking with space

charge. If you wait long enough things almost always go

unstable. This is clearly not physical since beams persist

for hours at RHIC injection energies with space charge tune

shifts far in excess of the synchrotron tune. Other machines,

such as the BNL AGS, can have stable beams for seconds

with space charge tune shifts of order 0.2. This presents
us with something of an impasse. For short runs both Fig-

ures 6 and 7 show that space charge increases the range

of the stable region beyond what would be expected for a

reactive impedance while longer simulations show the re-

verse. To make some sort of headway for bunched beams

we will assume that Equation (1) is sufficiently accurate for

beams of interest. While vastly reducing the theoretical and

computational complexity it should be clear that this is a

fairly strong assumption and that the problem of a correct

transverse force model is unresolved.

Exact solutions using Eq. (1) for transverse modes of a

bunched beam with constant line density within the bunch

are given in appendix II of [11]. Exact longitudinal modes
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Figure 5: Emittance growth for purely linear simulations

within the Vlasov stability boundary. The theory assumes

all particles have imaginary tune Im(ΔQ0)/Np with perfect

phase mixing. The blue curve is just inside the stability

boundary.
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Figure 6: The imaginary part of the tune seen in trackingwith

damping due to chromatic tune spread or frequency spread.

The blue cure is the result of tracking with realistic space

charge for 5000 turns and the red curve is a shifted version

from tracking with no space charge. The magenta curve was

obtained for tracking for 50,000 turns, no significant secular

changes in the beam were observed before the instability

started.

for a bunch with a parabolic current profile are given in [12]

which also reduces the dispersion relation to a polynomial.

The problem can also be cast as a finite eigenvalue prob-

lem [13,14]. In the exact solutions the forces due to space

charge end up being linear in the sense that the depressed

tunes are just numbers, not functions of the longitudinal coor-

dinates. The effect of space charge on transverse instabilites

with smooth longitudinal profiles was studied in [3, 13–21].

The mode expansion technique was shown to be suspect

in [13, 14]. It is not clear how many of the conclusions of

these studies are consistent and it is certainly true that the

broad conclusions presented in [14] are contradicted by [21].

 0

 0.0001

 0.0002

 0.0003

-0.03 -0.02 -0.01  0  0.01

Im
(Δ

Q
)

Re(ΔQ0)

no sc
fft sc,short
fft sc,long

Figure 7: The imaginary part of the tune seen in trackingwith

damping due to octupolar tune spread. The blue cure is the re-

sult of tracking with realistic space charge for 5000 turns and

the red curve is from tracking with no space charge. The ma-

genta curve was obtained for tracking for up to 50,000 turns.

Data were limitied to regions where no secular changes in the

beam emittance were observed before the instability started.
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Figure 8: Simulation with octupolar tune spread and space

charge. The points with Re(ΔQ0) = −0.018 in Figure 7 were
obtained from this run. Turns 1000 though 5000 yielded

Im(Q) = 0.53×10−4 while the last 1000 turns gave Im(Q) =
1.9 × 10−4.

In the next section we will present some beam transfer func-

tion data from RHIC in hope of providing some clarity

BEAM TRANSFER FUNCTIONS
A beam transfer function (BTF) is obtained when a kicker

is driven at a single frequency and a pickup measures the

phase and amplitue of the beam response at that same fre-

quency. One steps through frequencies and maps out the

beam response [22]. Figure 9 show vertical BTF data from

RHIC for polarized protons at injection. The bunches were

∼ 35 ns at base and the BTFs were take near 250 MHz. The

two sidebands were taken on different days and in different

rings. The peaks of the BTFs were fit with a parabolic cap.
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Figure 9: BTF data from RHIC near 250 MHz with protons

at γ = 25.5. The average beam currents ranged from 0.3 to
1.5 A. Vertical data from the n −Q sidband of the blue ring

are on the left and data from the n +Q vertical sideband of

the yellow ring are offset to the right by 1 kHz.
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Figure 10: Frequency shift of n − Q vertical sideband for

the blue ring.

The frequency was assumed to be a linear function of inten-

sity and a linear drift in time was allowed for. The fitting

results for the two sidebands are shown in Figures 10 and 11.

The average current for a bunch is defined to be

Iavg =

∫
bunch

I2(t)dt

∫

bunch

I (t)dt
(4)

The simulations assume Equation (1) is sufficiently accu-

rate. Given this assumption any representation of collective

forces that leads to Equation (1) will be acceptable. Instead

of using a KV distribution and demanding a small perturba-

tion it is much faster and more accurate to take the force on

particle j to be

Fj = Csc

Np∑
k=1

(x j − xk )λ(τj − τk ) (5)
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Figure 11: Frequency shift of n + Q vertical sideband for

the yellow ring.
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Figure 12: Space charge tune shift as a function of bunch

postion used in the simulations for an average current of

1A. The multi-hump structure is due to the admixture of

9.4MHz and 197 MHz rf voltage.

where x j and τj are the transverse and longitudinal coordi-
nates of the particle kicked, and λ(τ) is a smoothing func-
tion. Care must be taken to keep the smoothing length small

enough and the number of macroparticles (Np) large enough.

Figure 12 shows the incoherent space charge tune shift along

the bunch and Figure 13 shows some simulated BTFs [23].

We were unable to reproduce the shoulder apparent in the

n + Q sideband of the data. Figures 14 and 15 show sim-

ulation results for frequency shift versus time. Agreement

with the data is not good. One possible cause for the dis-

crepancy is that the transverse emittance of the RHIC beam

is a function of beam intensity. That would cause the space

charge impedance to be a function of intensity. It is also

likely that the broad band impedance is not the same in the

two rings. Impedance measurements using kicked beams

show differences by a factor of 2 [24]. We plan to take more

data with both sidebands from each ring and to monitor and

or control the transverse emittance.
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Figure 13: Simulated BTF with Zsc = 44MΩ/m and

Zwall = 5MΩ/m. The average beam currents were 1, 0.66,

0.33, 0.10A.
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Figure 14: Simulated frequency shift of n −Q vertical side-

band.
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Figure 15: Simulated frequency shift of n +Q vertical side-

band.
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