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Abstract 
S-POD (Simulator of Particle Orbit Dynamics) is a 

tabletop experimental apparatus developed at Hiroshima 
University for systematic studies of various beam dynamic 
effects in modern particle accelerators. This novel 
experiment is based on an isomorphism between the basic 
equations governing the collective motion of a non-neutral 
plasma in a trap and that of a charged-particle beam in an 
alternating-gradient (AG) focusing channel. The system is 
particularly useful in exploring space-charge-induced 
collective phenomena whose accurate study is often 
troublesome in practice or quite time-consuming to 
simulate even with high-performance computers. This 
paper addresses recent experimental results on the stability 
of intense hadron beams traveling through long periodic 
AG transport channels. Emphasis is placed upon coherent 
resonances that occur depending on the lattice design, 
beam intensity, error fields, etc. 

INTRODUCTION 
It is often difficult to perform systematic investigation of 

intense beam behavior not only in an experimental way but 
also in a numerical way. Experimentally, the overall lattice 
structure of a large machine is not changeable once it is 
constructed. Other fundamental parameters such as tunes, 
beam density, etc. are also not very flexible in general as 
long as we rely on real accelerators or beam transport 
channels. Although these parameters can be chosen freely 
in numerical simulations, high-precision tracking of 
charged particles interacting each other via the Coulomb 
fields is quite time-consuming even with modern parallel 
computers whenever the beam intensity is high. To 
overcome or lighten these practical difficulties that we face 
in fundamental beam dynamics studies, we proposed the 
concept “Laboratory Accelerator Physics” where the 
tabletop system called “S-POD” is employed instead of a 
large-scale machine to experimentally simulate the 
collective motion of high-intensity beams [1,2]. This 
accelerator-free experiment allows us to explore a wide 
range of parameter space simply by controlling the AC and 
DC voltages applied to the electrodes. Since everything is 
stationary in the laboratory frame, high-resolution 
measurements can readily be done and we do not have to 
worry about radio-activation due to heavy particle losses. 
S-POD experiment, indeed, has practical limitations [3], 
but it gives us useful insight into intense beam dynamics 
easily and quickly. 

Three independent S-POD systems based on linear Paul 
traps (LPT) [4] were designed and constructed at 
Hiroshima University, which have been applied to different 
beam-physics purposes [2,5-7]. In this paper, we 
summarize recent experimental results from S-POD II and 
III on collective resonance instability depending on AG 
lattices. As mentioned above, such an experimental study 
cannot be conducted systematically in any real machine 
whose lattice structure is fixed. We here control the radio-
frequency (rf) waveform of quadrupole focusing to 
emulate the beam behavior in several standard AG lattices 
involving doublet and FDDF sequence. 

S-POD 
S-POD is composed mainly of a compact LPT, DC and 

AC power sources, a vacuum system, and a personal 
computer that controls a series of measurements and data 
saving. Figure 1 shows a side view of a typical multi-
sectioned LPT employed for S-POD. Four cylindrical rods 
are symmetrically placed to generate the rf quadrupole 
potential for strong transverse focusing of ions. The 
transverse motion of an ion confined in a LPT is governed 
by the Hamiltonian [1] 

           (1) 

where the independent variable is  with c being the 
speed of light, I is a constant depending on the ion species, 
and the function Krf ( )   is proportional to the rf voltage 

applied to the quadrupole rods. Since the collective 
Coulomb potential  and the time-evolution of the ion 
distribution in phase space obey the Vlasov-Poisson 
equations, this many-body system is physically equivalent 
to a charged-particle beam traveling through an AG 
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Figure 1: Typical measurement steps [8]. 
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transport channel. We can thus study the fundamental 
features of intense beams by observing the collective 
behavior of an ion plasma in a LPT. Unlike the case of 
actual beam transport channels with many Q-magnets, the 
AG focusing function Krf ( )   in S-POD is controllable 

over a wide range without any mechanical change to the 
trap geometry; all we need is to change the waveform of 
the rf voltage. It is possible to introduce imbalance between 
the horizontal and vertical focusing strengths if necessary, 
so that we can independently adjust the two bare tunes. 

S-POD II and III are both operated at the frequency of 1 
MHz (in the case of standard sinusoidal or doublet 
focusing). The ion species chosen for the present 
experiment is 40 Ar  . Then, the maximum rf amplitude 
required to survey the full tune space is less than around 
100 V. As illustrated in Fig. 1, the quadrupole electrodes of 
the LPT are divided into five electrically isolated pieces in 
the axial direction. In addition to the transverse rf voltages, 
we add proper DC bias voltages to these five quadrupole 
sections to form a longitudinal potential well. After a 
necessary experimental procedure is completed, one of the 
longitudinal potential barriers is dropped to extract the 
plasma toward the Faraday cup or the MCP detector on the 
other side. 

DOUBLET FOCUSING 
The rf power generator of S-POD has been designed to 

produce a wide range of stepwise waveforms. While the 
sinusoidal waveform is commonly used in regular LPTs, 
we have tried more complex waveforms including doublet, 
triplet, FDDF, etc [8]. Figure 2 shows a doublet waveform 
that has the quadrupole filling factor of 0.25. The distance 
from QF (focusing pulse) to QD (defocusing pulse) has 
been set equal to that from QD to QF in this example. The 
number of 40 Ar   ions surviving after 10 ms (104 rf 
periods) in this AG potential is plotted in Fig. 3 as a 
function of the bare phase advance per single doublet cell. 
Since the horizontal and vertical focusing are symmetric, 
the phase advances ( 0 x ,  0 y )  in both directions are 

identical; namely,  0x   0 y (  0 )  . We find three clear 

instability regions, all of which shift to the higher  0  side 

as the initial plasma density increases. Essentially the same 
stop-band distribution has been repeatedly observed in past 
S-POD experiments where the sinusoidal rf waveform was 
employed for transverse ion confinement [5-7]. According 
to a Vlasov theory [9] as well as past numerical work [10], 
the instability of the linear collective mode should be 
responsible for major ion losses near  0  90 [deg]. The 

other two stop bands near  0  60  and 120 [deg] are 

probably due to the third-order resonances. Since the 
instabilities near  0  60 and 90 [deg] are driven by the 

space-charge potential rather than external nonlinear error 
fields, these collective resonances are considerably 
weakened or even almost disappear at low density. We 
have carried out a number of stop-band measurements 
using various doublet waveforms with different geometric 

factors. We then observe the same stop band distribution as 
indicated in Fig. 3 as long as the symmetric transverse 
focusing ( 0x   0 y ) is assumed. 

 

 
Figure 2: A doublet-type waveform produced by the rf 
power source of S-POD II. 
 

 
Figure 3: Resonance instability bands corresponding to the 
doublet focusing in Fig. 2. 

COUPLING RESONANCE 
The ion losses near  0  60  and 90 [deg] in Fig. 3 

should be caused by purely horizontal and vertical 
resonances overlapping each other. For instance, at 
 0  90  [deg], we have a possibility of relatively low 

order (2nd- and 4th-order) resonances independently in 
both transverse directions; namely, the conditions of 
primary resonances are given by 2 0 x  180  [deg], 

2 0 y  180  [deg], 4 0x  360   [deg], and 4 0 y  360  

while the former two resonances become prominent only 
at high intensity [9]. Each of these stop bands splits into 
two parts when we introduce weak asymmetry in the 
transverse focusing strengths such that  0x   0 y  and then 

plot the stop band distribution as a function of either  0 x  

or  0 y . On the other hand, coupling resonance lines that 

depend simultaneously on  0 x   and  0 y   may also be 

created if sufficiently strong error fields are present. The 
resonance condition at zero intensity is given by 
m 0 x  n 0y  (integer) 360   for the driving field of 
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the form xm yn  where m and n are positive integers. In the 

case of the lowest-order nonlinearity, i.e. sexupole, 
(m, n)  (1, 2) or (2, 1). To confirm the existence of such 

coupling resonance lines, we employed S-POD III driven 
by the sinusoidal rf waveform, instead of the doublet type, 
for the sake of simplicity. Figure 4 is the phase-advance 
diagrams experimentally obtained at different ion 
densities. The ion loss rate after a certain storage period is 
color-coded in the region of relatively high phase advances 
where we expect the occurrence of nonlinear coupling 
resonances [11]. The two third-order sum resonance lines 
can be identified while the forth-order difference resonance 
line 2 0x  2 0y  0  is invisible in this data. We 

recognize the stop-band shifts depending on the plasma 
intensity. Recent S-POD experiments as well as 2D Vlasov 
analysis suggest that at high beam intensity, coupling 
resonance is expected to occur under the condition 

m( 0 x   x )  n( 0y   y )  (integer)  360,   (2) 

where  x  and  y  are the phase-advance shifts induced 

by the Coulomb potential. If this condition is correct, the 
vertical (or horizontal) shift of a coupling resonance line in 
the phase-advance diagram depends on the combination of 
the integers m and n. For example, when (m, n)  (2, 1) 
and  x   y , the space-charge-induced shift of the sum 

resonance line is three times larger than that of the 
difference resonance. When m  n  , the difference 
resonance line does not move depending on the plasma 
density (as long as  x   y ). In the case of a circular 

machine with the lattice superperiodicity of Nsp, the 
coupling resonance condition corresponding to Eq. (2) can 
be expressed as 

m(0 x  x )  n(0 y   y )  kNsp ,             (3) 

where k is an integer, and (0 x , 0 y ) are the transverse bare 

tunes depressed by the amount of ( x ,  y )  at high 

intensity.  

FDDF SEQUENCE 
The FDDF (or FFDD) waveform is another popular 

lattice often adopted in modern accelerators. One such 
example is the UNILAC at GSI [12]. Although the unit cell 
contains four quadrupoles (two are focusing and the other 
two defocusing in one transverse plane), we reasonably 
expect that the overall resonance behavior should be 
similar to that of the doublet focusing. Recent S-POD 
experiments actually revealed that the stop band 
distribution of the FFDD lattice is the same as what we 
observe in Fig. 3. Three instability bands are found near 
 0   60, 90, and 120 [deg]. The stop band at  0  90 

[deg] usually gives rise to the most severe ion losses 
provided the initial plasma density is high. However, as 
already mentioned, this instability becomes quite weak at 
low density unless a non-negligible source of fourth-order 
external driving force exists. 

Highly Symmetric Ring 
The three-stop-band feature as shown in Fig. 3 should be 

more or less universal among long linear transport 
channels whose structures are simple repetition of short 
focusing cells like FODO, symmetric doublet, and FFDD. 
In contrast, the resonance feature can be more complex in 
a circular machine because the focusing period is generally 
much longer. Each superperiod often contains several or 
more unit focusing blocks. The stored beam receives 
strictly periodic kicks every turn, even including 
imperfection fields. Such complex nature of a large closed 
system can make the stop-band distribution essentially 
different from that in Fig. 3. 

Let us consider a circular machine consisting of N FDDF 
cells [13]. According to our past experience with S-POD, 
the condition of the transverse collective resonance excited 
independently in either the horizontal or vertical direction 
by the m-th order space-charge force is likely to have the 
form [9] 

m(0x(0 y)  x(y) ) 
kNsp

2
,                     (4) 

where the coherent tune shifts  x(y)  depend on the order 

number m. Sacherer first pointed out theoretically that 
 x(y)  is somewhat smaller for a lower-order resonance at 

a specific beam density [14]. As for the coupling resonance 
driven by the potential xm yn , the resonance condition (3) 

should hold. 
As an example, we assume N  50 . If all 50 FDDF cells 

are perfectly identical, Nsp is also equal to 50. We then 
predict from Eq. (4) that the three stop bands as in Fig. 3 
will appear at the tunes slightly above 50 / 6 , 50 / 4 , and 
50 / 3  in both transverse directions. The corresponding S-
POD experiment was performed which resulted in the stop 
band distribution of Fig. 5(a) where 0 x  0 y ( 0 )   for 

simplicity. The number of ions initially stored in the trap is 
either 105  or 106 . The ordinate represents the number of 
ions surviving after 100 turns around the 50-fold 

 
Figure 4: Resonance instability lines of sinusoidal 
focusing measured at different initial ion densities.
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symmetric ring. We observe three instability regions as 
expected. 

Effect of Lattice Symmetry Breaking 
The proton synchrotron (PS) at CERN is composed of 

50 FDDF cells [15], similarly to the example taken in the 
last section. Therefore, three stop bands in Fig. 5(a) must 
be found also at CERN-PS near the bare tunes 
0 x(0 y )  50 / 6 , 50 / 4 , and 50 / 3  at high beam intensity 

even without imperfection fields. The actual focusing 
period around the ring is, however, not necessarily 50, 

namely, Nsp  N  , but the lattice functions may be less 

symmetric depending on the choice of the tunes and other 
parameters. For instance, we here look into the case where 
the external driving force has 10-fold symmetry around the 
ring; namely, N  50   but Nsp  10  . A single lattice 

superperiod then contains five FDDF blocks. Such type of 
lattice symmetry breaking has been considered in a 
possible new optics of PS to ensure a larger distance from 
nearby nonlinear resonance lines [16]. Among a wide 
variety of ways to reduce the symmetry of the rf focusing 
force, in the present study we took the waveform as 
illustrated in Fig. 6. Each superperiodic cell consists of four 
identical FDDF blocks plus one more FDDF with a slightly 
different geometric factor. This long focusing wave repeats 
10 times every turn around the ring. The corresponding 
stop-band distribution measured with S-POD II is shown 
in Fig. 5(b). In this experiment, we changed the quadrupole 
filling factor of the fifth FDDF block by 2% compared to 
the other four blocks (that have the filling factor of 0.5). 
The focusing and defocusing pulse shapes were chosen 
identical so that 0x   0 y ( 0 ) . In addition to the three 

stop bands, several more unstable regions appear due to the 
reduction of the lattice symmetry. Specifically, rather 
severe instabilities are newly excited near 0 5, 10, 15, 

and 20. It is interesting to see that at least two independent 
ion-loss mechanisms are present within each of these new 
instability regions; there is always a relatively wide 
instability band accompanied by very sharp and heavy ion 
losses on the low tune side. We notice that the sharp stop 
bands do not move much depending on the ion density. 
Another series of S-POD experiments have demonstrated 
that these stop bands are widened as we enhance the 
perturbation to the fifth FDDF cell in each superperiod. 

 
Figure 5: Resonance instability bands in a closed AG 
lattice consisting of 50 FDDF cells. (a) 50-fold 
symmetric case where all FDDF cells are identical. (b) 
10-fold symmetric case where the pulse widths in 
every five FDDF cells are weakly perturbed as 
indicated in Fig. 6. The horizontal and vertical bare 
tunes are set equal in both cases. 

 
Figure 6: FDDF waveform with a perturbed cell. 

 
Figure 7: Resonance instability bands in the 10-fold 
symmetric lattice considered in Fig. 5(b). The two 
transverse tunes are not equal here but slightly different 
satisfying the relation 0y  0x  0.02 . 
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It is also important to ask what happens when the 
transverse tunes are unequal (which corresponds to 
possible operating conditions of PS). To answer this 
question, we slightly modified all 50 FDDF pulses in an 
asymmetric way to develop imbalance between the 
horizontal and vertical focusing forces. Figure 7 shows the 
stop-band distribution obtained under the condition 
0y  0x  0.02 . Note that the measured data are plotted 

as a function of the vertical bare tune 0x . We confirm that 

the major stop bands in Fig. 5(b) split into two instability 
bands. This implies that most stop bands observed under 
the symmetric focusing condition 0x  0 y   have been 

created by two independent (horizontal and vertical) 
resonances overlapping at the same tune. The two sharp ion 
losses at 0x 14 and 15 in Fig. 7 probably originate from 

the narrow stop band at 0  15   in Fig. 5. Since the 

abscissa of Fig. 7 is 0x  , we assume that the ion losses 

staying at 0x  15  are due to horizontal instability while 

those shifted to 0x  14 occur vertically. On the other 

hand, it appears as if the narrow band at 0x 10 in Fig. 

5(b) moved to 0x  9 without splitting, but we believe 

that there should still be the horizontal instability band at 
0x  10 (which was too narrow to be detected in this 

experiment). In fact, we found very sharp instability at 
0x  10 in another experiment performed under 

0y  0x  0.05 . 

SUMMARY 
The S-POD systems at Hiroshima University have been 

employed to explore fundamental beam dynamics issues in 
particle accelerators. In the present experimental study, we 
focused on transverse resonance instability caused by the 
periodic nature of AG focusing lattices. Several standard 
AG waveforms, such as sinusoid, doublet, and FDDF, was 
taken to demonstrate how such instability arises depending 
on particle density, bare tunes, and lattice symmetry 
breaking. It has been verified that the stop-band 
distributions are similar in long transport channels simply 
repeating any of these short, symmetric AG waveforms. 
We always encounter the distribution as depicted in Fig. 3, 
no matter what waveform geometric factors are chosen for 
doublet and FDDF. Needless to say, the stop-band 
distribution becomes much more complex when a unit 
lattice period contains not one but many AG focusing 
blocks of non-identical geometries. In any case, the 
coherent resonance condition in Eq. (4) seems to roughly 
explain the locations of major horizontal and vertical stop 
bands observed at high beam density. (At low density, the 
factor 1 / 2  on the right hand side should be omitted.) 
Provided relatively strong nonlinear coupling potentials 
are present, we also expect the sum and/or difference 
resonances excited under the condition of Eq. (3). The 
existence of such coupling resonance lines was confirmed 
in S-POD III using the sinusoidal focusing waveform.  

An interesting stop-band behavior has been found when 
a highly symmetric closed lattice is perturbed to have lower 
symmetry (Fig. 5). The symmetry breaking excites 
additional instability regions, each of which often includes 
a very narrow stop band and a wider one on the right. The 
origin of such double stop bands that appear side by side is 
presently unclear. While preliminary particle-in-cell 
simulations suggest that nonlinear driving fields may be 
responsible for the excitation of the sharp stop bands, we 
still need further careful investigation to reach a definitive 
conclusion on this issue. We are now planning to develop 
a unique multipole LPT that enables us to control the time 
structure and strengths of low-order nonlinearity 
independently of the primary quadrupole focusing 
potential [17]. 

REFERENCES 
[1] H. Okamoto and H. Tanaka, Nucl. Instrum. Meth. A 

437, 178 (1999). 
[2] H. Okamoto et al., Nucl. Instrum. Meth. A 733, 119 

(2014). 
[3] The S-POD experiment described here is based on 

linear Paul traps that utilize only electric fields for 
particle confinement. It is thus impossible to exactly 
reproduce dispersive effects induced by dipole 
magnetic fields in circular machines.  

[4] P. K. Ghosh, Ion Traps (Oxford Science, Oxford, 1995) 
and references therein. 

[5] S. Ohtsubo et al., Phys. Rev. ST Accel. Beams 13, 
044201 (2010). 

[6] H. Takeuchi et al., Phys. Rev. ST Accel. Beams 15, 
074201 (2012). 

[7] K. Fukushima et al., Nucl. Instrum. Meth. A 733, 18 
(2014). 

[8] H. Okamoto et al., FRXAA01, IPAC’14, Dresden, 
Germany, June 2014, p. 4052 (2014). 

[9] H. Okamoto and K. Yokoya, Nucl. Instrum. Meth. A 
482, 51 (2002). 

[10] See, e.g., M. Reiser, Theory and Design of Charged 
Particle Beams, John Wiley & Sons, New York 
(1994), and references therein. 

[11] The ion storage period in the low-intensity experiment 
(left figure) was 100 s while we extended the period 
to 1 ms at high intensity (right figure) to enhance the 
loss rate.  

[12] L. Groening et al., Phys. Rev. Lett. 102, 234801 
(2009). 

[13] We here ignore the effect from bending magnets. 
[14] F. J. Sacherer, Ph.D thesis, Lawrence Radiation 

Laboratory [Report No. UCRL-18454, 1968]. 
[15] R. Wasef et al., WEPEA070, IPAC’13, Shanghai, 

China, May 2013, p. 2669 (2013). 
[16] S. Machida, private communication. 
[17] H. Okamoto, Y. Wada, R. Takai, Nucl. Instrum. Meth. 

A 485, 244 (2002).  

TUO2LR03 Proceedings of HB2014, East-Lansing, MI, USA

ISBN 978-3-95450-173-1

182C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Computational Challenges, New Concepts and New Projects


