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Abstract

ISIS is the pulsed spallation neutron source based at

Rutherford Appleton Laboratory in the UK. Operation is

based on a 50 Hz, 800 MeV proton synchrotron, accelerating

up to 3 × 1013 protons per pulse, which provides beam to

two target stations. Space charge effects contribute signifi-

cantly to beam loss. Fields from the intense beam interact

strongly with their environment. At ISIS the vacuum vessel

is rectangular and profiled to follow the shape of the design

beam envelope.

Past studies have suggested that closed orbit induced im-

age fields may contribute to beam loss under certain condi-

tions. Image fields for parallel plate and rectangular geome-

tries are reviewed, in particular their expansion as power

series is determined. A simulation tool has been developed

for particle tracking with space charge. The code contains

both Fast Fourier Transform and Finite Element Analysis

based field solvers, which have been used here to test the

range of validity for the power series expansions for centred

and off-centred beams.

These expansions are then used to determine driving terms

for the transverse beam motion. Of particular interest for

ISIS is the resonant behaviour of beams with a harmonic

closed orbit, which can be compared with the output of beam

tracking simulations.

INTRODUCTION

At the highest intensities it is believed that image forces

from off-centred beams can contribute to losses on ISIS [1,2].

These beam losses are difficult to isolate during normal

operation of the facility. Therefore a program of analysis

and simulation has been established in order to describe the

effect of image forces and try to estimate the level of beam

loss they could potentially cause. In the future it is hoped

that a better understanding of the image forces may allow

them to be identified experimentally. Analyses for parallel

plate and rectangular geometry including centred and off-

centred beams are reviewed. The results are then compared

with the output of particle-in-cell (PIC) simulations.

The ISIS rapid cycling synchrotron (RCS) accelerates a

high intensity beam at a fast repetition rate of 50 Hz. The

synchrotron has a circumference of 163 m. It is composed of

10 super periods, with specialised sections for injection, ex-

traction and collimation. The peak incoherent tune shifts are

0.5 or larger in both planes. Many different loss mechanisms

may contribute to beam loss at any particular point in the

machine cycle, especially during the time between injection

and bunching of the beam, when space charge forces peak.

In order to gain insight into the individual loss processes it is
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Figure 1: Apertures and envelopes for one super period of

the ISIS RCS: (top) horizontal, (bottom) vertical.

helpful to separate out different effects to study. For the pur-

pose of the present paper attention is focused purely on the

transverse plane, and in particular a geometrical approach

to the image forces.

ISIS has rectangular vacuum vessels and RF shields whose

cross section runs parallel to the design beam envelope in

both planes (Figure 1). Of particular interest for ISIS are

the higher order image terms due to off-centered beams. It

has been suggested that these may affect beam loss at the

highest intensities [1].

IMAGE FIELDS IN PARALLEL PLATE

AND RECTANGULAR GEOMETRY

Image Terms due to Laslett

Following Laslett [3], parallel plate geometry is used as

an approximation to rectangular. For a beam centred at y1

between two infinite parallel plates at ±h and a field point at

y as shown in Figure 2, there are an infinite series of images

above and below the beam. Conformal mapping may be

used to transform to a new system where the images are
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Figure 2: Parallel plate geometry before conformal mapping.
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Figure 3: Parallel plate geometry after a conformal mapping

into the real axis.

easier to obtain. The transformation z′ = eπ (z+ıh)/2h carries

points 1 - 5 from Figure 2 into the real number line in z′ as

shown in Figure 3.

The potential due to a line charge is W = −2λ ln |z |

W = −2λ(ln
���e
ıπ (y+h)/2h − eıπ (y1+h)/2h ���

− ln
���e
ıπ (y+h)/2h − e−ıπ (y1+h)/2h ���).

The real potential is obtained from this

U = −2λ ln
�����

sin(πy/2h) − sin(πy1/2h)

1 + cos(π(y + y1)/2h))

�����
. (1)

Equation 1 is exact. The answer is then approximated using

power series expansions. Expanding to second order

U ≃ −2λ



ln
�����

π(y − y1)

4h

�����
+
π2(y2 + 4yy1 + y

2
1
)

48h2



 .

The first term is the potential of a bare line charge, the second

is Laslett’s expansion for images between parallel plates.

While real, high intensity beams are not point like, the image

terms are still a reasonable approximation if the beam is far

enough away from the chamber wall.

If Laslett’s image term is differentiated with respect to y

we obtain the image component of the electric field

Ey ≃ −2λ
π2

48h2
(2y + 4y1) .

Changing variables to ȳ = y1 and ŷ = y − y1 then gives

Ey ≃ −2λ
π2

48h2
(2ŷ + 6ȳ) .

Laslett’s image co-efficients are divided by 4 to obtain ǫ1 =
π2

48
for images due to the offset of the field point from the

centre of the beam (known as the incoherent term), and

ξ1 =
π2

16
for images due to the offset of the beam from the

centre of the beam pipe (known as the coherent term), finally

giving for the electric field due to images

Ey ≃ −4
λ

h2
(ǫ1 ŷ + ξ1 ȳ) . (2)

Expansion due to Baartman

Baartman [2] starts with Equation 1, but expands the

power series to the 5th power to obtain

U ≃ −2λ(ln
�����

π(y − y1)

4h

�����
+
π2(y2 + 4yy1 + y

2
1
)

48h2

+
π4(7y4 + 32y3

y1 + 42y2
y

2
1

+ 32yy3
1

+ 7y4
1
)

23040h4
).

Leaving out the term due to the free line charge and differ-

entiating with respect to y to get Ey

Ey =
λπ2

24h2
(2y + 4y1)+

λπ4

11520h4
(28y3 + 96y2

y1 + 84yy2
1 + 32y3

1 ).

Baartman then rearranged this in terms of ȳ = y1 and ŷ =

y − y1 to give

Ey =
λπ2

24h2
(2ŷ + 6ȳ)+

λπ4

11520h4
(28ŷ3 + 180ŷ2

ȳ + 360ŷ ȳ2 + 240ȳ3)

=

λπ2 ŷ

12h2 +
λπ2 ȳ

4h2 +
28λπ4 ŷ3

11520h4 +
λπ4 ŷ2 ȳ

64h4 +
λπ4 ŷ ȳ2

32h4 +
λπ4 ȳ3

48h4 .

The first two terms are Laslett’s linear image terms. The

others represent non-linear terms which are functions of

both the distance of the field point from the beam centre,

and the beam centre offset from the origin. It is these higher

order terms that Rees, Prior [1] and Baartman suggested as

a source of closed orbit image driven losses at ISIS.

Elliptical Function Solution due to Ng

Ng also uses conformal mapping to derive the potential

but then uses elliptical functions, K (k), to solve for the exact

solution with a rectangular boundary [4, 5]. For a centred

beam the elliptical functions simplify to (see Equation 3.109

from [5]):

sn

(

K (k′)

2
, k′

)

=

1
√

1 + k
,

cn

(

K (k′)

2
, k′

)

=

√
k

√
1 + k

,

dn

(

K (k′)

2
, k′

)

=

√
k .
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Figure 4: Mesh for Poisson solvers: (left) FFT solver using

finite difference approach, (right) FEA solver using iterative

relaxation.

The nome for rectangular geometry is q = e−2πω/h . The

argument of the doubly periodic functions can be approx-

imated if the ratio of the vacuum vessels satisfies certain

conditions:

k2
= 16q(1−8q+44q2−192q3+718q4−2400q5+7352q6

− 20992q7 + 56549q8).

K (k) =
π

2

[

1 +
1

4
k2 +

9

64
k4 + O(k6)

]

.

Following these steps a simple estimate may be made for the

image co-efficient for a centred beam cf. Equation 2

ǫ1 =
K2(k)

12
(1 − 6k + k2).

SIMULATION MODEL

In this section the Poisson solvers are presented and some

initial results demonstrated, then in the next sections they

are used to investigate the different models that have been

introduced. The simulation model allows the generation of a

beam distribution in a rectangular boundary, and calculation

of the resulting potential and electric fields. Two Poisson

solvers were compared for this task, one using a rectangular

mesh with a Fast Fourier Transform (FFT) solver and the

other using a triangular mesh and a Finite Element Analysis

(FEA) solver, see Figure 4. The solvers are from the beam

tracking code, Set [6].

The FFT solver was originally created to solve for the

potential of beam fields in the ISIS conformal vacuum ves-

sel. The FEA solver was added to allow the calculation of

beam fields in other geometries. Their main requirements

are speed and accuracy, as normally they have to solve for

beam potentials hundreds of times per simulated turn in

the beam tracking code, Set. The FFT solver uses matrix

methods to directly solve for the potential, while the FEA

solver uses an iterative relaxation approach. For these simu-

lations a KV beam distribution was used as it has a linear

space charge force which can easily be compared with theory.

5 × 105 macro particles were used for each of the simula-

tions as this number gave acceptably low statistical noise.

Figure 5 (left) shows a scatter plot of the particles in a square

aperture, while Figure 5 (right) shows a density plot of the

same. Figures 6 and 7 show the potential and electric fields

calculated from a KV beam in a square aperture. Figure 8

shows the horizontal and vertical fields on lines through

Figure 5: (Left) KV distribution in a square aperture showing

104 particles, (right) density plot of the KV distribution.

Figure 6: 3D plot of potential due to KV beam in square

aperture, units ǫ0 V.

the centre of the beam, compared with the calculated fields

for a KV beam. There was an excellent level of agreement

between the FFT and FEA solvers for both the obtained

potential and fields, presented more fully elsewhere [7].

Results for Centred Beam

The range of validity for the parallel plate approximation

was compared with the full rectangular geometry solution.

In this case a centred beam was investigated, so only the

image terms due to a centred beam were considered. An

image co-efficient equivalent to Laslett’s (Equation 2) could

be obtained by taking the gradient of the electric field across

the beam. A linear fit provided the best match to the image

co-efficient. Baartman’s expansion only adds very small

terms to the solution for a centred beam. A set of simulations

was run in which the beam pipe width was varied from 75 to

300 mm while the height was held constant at 100 mm. The

beam radius was 50 mm. Image coefficients were calculated

from each simulation and the results plotted in Figure 9,

along with Laslett’s prediction for a centred beam between

parallel plates. Laslett’s image term is the solution that

the simulation tends to as the ratio of horizontal to vertical

beam pipe size becomes larger. As Laslett’s solution is for

infinite parallel plates this is to be expected. It is also clear

that Laslett’s solution is the “worst case scenario” and so

represents a pessimistic estimate, useful for machine designs

where one wants to err on the side of caution. It is also

interesting that the incoherent image term approaches zero

when the beam pipe ratio is 1.

Ng’s solution was also compared with these results, also in

Figure 9. As can be seen this value for the image coefficient

had an excellent agreement with the simulation results.
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Figure 7: Fields produced by FFT solver: (left) horizontal

and (right) vertical, units ǫ0 V / mm.

Figure 8: Fields produced by FFT and FEA solvers, com-

pared with those for a KV beam in free space: (left) hori-

zontal axis and (right) vertical axis.

Results for Off-Centred Beam

For these results, in addition to scanning the beam pipe

aspect ratio between 0.75 and 3, the beam offset from centre

was varied between 0 and 30 mm in steps of 5 mm. In each

case the electric fields along the horizontal and vertical axes

of the beam were recorded. For an off-centred beam the

higher order image terms become significant. Baartman

introduces the higher order image coefficients κ in [2] as

follows

Eyimage

4λ
= ǫ1

ŷ

h2
+ ξ1

ȳ

h2
+ κ30

ȳ
3

h4
+ κ21

ŷ ȳ
2

h4

+ κ12

ŷ
2
ȳ

h4
+ κ03

ŷ
3

h4
+ ... (3)

A third order polynomial function with respect to ŷ was fitted

to the electric field obtained from the simulations. Further

Figure 9: Results for a scan of beam pipe width from 75 -

300 mm, while height is held fixed at 100 mm. Laslett and

Ng’s image co-efficients for a centred beam compared with

simulations.

Figure 10: Laslett’s image co-efficient for an off-centred

beam, as a function of beam pipe aspect ratio from 0.75 - 3,

compared with simulations.

Figure 11: The higher order image term κ21 as a function of

beam pipe aspect ratio from 0.75 - 3.

fitting was carried out to obtain functions with respect to ȳ

in order to obtain the values of the κ terms from Equation 3.

Errors were calculated by generating 10 sets of additional

values at beam pipe aspect ratios of 1 and 3, and the averages

taken. These errors are representative of noise in the KV

beam. The same method was used for the errors in the

previous section.

Figure 10 shows the value of the coherent image term ξ1
as the beam pipe aspect ratio was scanned from 0.75 to 3.

Laslett’s value for the coherent term of π2

16
is also included.

As can be seen the simulation results approach Laslett’s

solution as the beam pipe aspect ratio becomes close to 2.

However, where the ratio is around 1 the coherent term is

nearer to half of this value.

Figure 11 shows the simulation results for the κ21 term

from Equation 3. This is a quadrupole term whose strength

is proportional to the square of the closed orbit offset. Rees,

Prior and Baartman [1, 2] believed it could be responsible

for some intensity dependent loss at ISIS. As can be seen

from the plot, This term peaks where the beam pipe aspect
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Figure 12: The higher order image term κ12 as a function of

beam pipe aspect ratio from 0.75 - 3.

ratio is near to 1, and therefore where ǫ1 and ξ1 are smallest.

While it is a small contribution to the overall image forces

further work is required to explore its role in beam dynamics

and loss.

There is also a sextupole term whose strength is propor-

tional to the closed orbit offset, κ12. The results for this term

are shown in Figure 12. This term also peaks where the

beam pipe aspect ratio is near to 1. Again as this is where

ǫ1 and ξ1 are smallest there may be an observable effect on

the beam dynamics.

In each of these cases the higher order image terms from

the simulations did not tend to the parallel plates result which

was obtained by Baartman. The reason for this is under

investigation.

Image terms were also explored in the vertical plane (if the

beam offset is in the horizontal plane). In the vertical plane

ǫ1 was equal to minus the value horizontally, as expected.

ξ1 and κ21 had values indistinguishable from zero, while

κ30, κ12 and κ03 all had finite values. This will be explored

further in future work.

CONCLUSION

Theory for centred and off-centred beams in parallel

plates, and for centred beams in rectangular geometry has

been reviewed. Image term co-efficients, including the co-

herent and incoherent terms due to Laslett and Ng, as well

as higher order terms due to Baartman have been identified.

A systematic simulation study including both FFT and

FEA PIC solvers has been carried out to obtain these im-

age terms numerically. There is a high level of agreement

between the two functionally different solvers. The results

of these simulations have been compared with theoretically

obtained values.

For the case of a centred beam, a linear fit to the image

terms is sufficient and this tends to Laslett’s incoherent term

as the beam pipe aspect ratio diverges. For a beam pipe

aspect ratio greater than 2 Laslett’s term is a close approxi-

mation to the image term. Ng’s elliptical function solution

for centred beams is an extremely good fit for the incoherent

term generally, and describes it well when the beam pipe

aspect ratio is near to 1.

When the beam is off-centre additional higher order image

terms become evident. Laslett’s coherent term is a good fit if

the beam pipe aspect ratio is greater than 2. However when

the beam pipe aspect ratio is near to 1, as it is on ISIS, this

term is about half of Laslett’s value.

Baartman describes the high order terms as κ terms. Of

these, κ21 and κ12 have their greatest value when the aspect

ratio is near to one, which is comparable to the situation

on ISIS. While these terms are small it is possible that they

have an effect on beam dynamics and this will be explored

further.

Additionally there are equivalent image terms in the or-

thogonal (vertical) plane. Their contribution to beam dy-

namics likewise requires further study.

FURTHER WORK

High order image driving terms have been identified. The

next step is to use these driving terms to predict the strength

and stop-band width of associated resonances. The results

of this analysis can then be compared with PIC simulations

including the relevant dynamics. Ultimately it is hoped

that any image related dynamic effects may be observed

experimentally on ISIS.

Additionally further work is planned exploring Ng’s el-

liptical function solution for off-centre beams, and seeing if

this approach may provide another way to gain access to the

high order image terms.
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