
A MULTI-PARTICLE ONLINE BEAM DYNAMICS SIMULATOR
FOR HIGH POWER ION LINAC OPERATIONS∗

X. Pang†, L.J. Rybarcyk, S.A. Baily
Los Alamos National Laboratory, Los Alamos, NM, 87544, USA

Abstract
A fast multi-particle online beam dynamics simulator

has been developed at LANL. It is a marriage of multi-

particle beam physics algorithms and graphics processing

unit (GPU) technology. It combines the execution efficiency

of the C/C++ programming language and a powerful yet

flexible user interface via Python scripts. Therefore, it is

not only accurate and fast, but also very easy to use. We

have used this simulator at LANSCE to guide linac tuning,

explore optimal operational settings, and test new ideas.

INTRODUCTION
Why Another Simulator?
Accelerator control rooms are usually equipped with on-

line beam modeling tools to help guide machine tuning.

These tools, which typically have access to machine set

points through the control system, can not only help physi-

cists and operators set up the machine faster, but also pro-

vide information on the beam properties in areas where no

measurements can be made. However, almost all of the

existing online modeling tools today are either based on

single-particle tracking or on envelope models. While they

might perform sufficiently well for nicely formed beams,

they cannot predict the nonlinear motions of a real beam or

estimate losses, especially in high-power operations when

beams can be highly nonlinear and chaotic.

The logical next step to improve the status quo is to use a

multi-particle beam dynamics code to provide more realistic

predictions. However, most of the existing multi-particle

simulation tools need either significant computational time

or supercomputer resources. This makes them impractical

to use during real world machine operations where fast turn-

around is required and where they may be in use for long

periods of time. In addition, they are typically not configured

to have ready access to online machine specific set points.

One can clearly see the gap that exists between the over-

simplified but fast models used in control rooms and the

highly sophisticated yet slow multi-particle simulation tools

which are usually used during the design process. The goal

of our development is to fill this gap by providing a multi-

particle simulation tool that is both accurate and fast enough

to be used in real world accelerator tuning and operation.

Why Use a GPU?
The graphics processing unit (GPU) is at the frontier of

high performance computing [1]. It powers several of the

∗ Work supported by U.S. DOE, NNSA under contract DE-AC52-

06NA25396. LA-UR-14-28658
† xpang@lanl.gov

world’s most powerful supercomputers and it has also democ-

ratized super-computing by enabling cluster performance on

people’s personal desktops. For us, the GPU offers outstand-

ing parallel performance and it is also the most cost effective

way to provide 24/7 availability for our online simulator.
With around a $600 USD investment in the GPU hardware,

one can get up to 100 times speedup compared to a single

threaded CPU. And this GPU workstation can be dedicated

to accelerator operations 24/7.

How to Use It?
This is where the users can freely apply their creativ-

ity. We have applied this tool to guide turn-on of the LAN-

SCE linac, to test what-if scenarios, to optimize operational

machine settings by combining it with the multi-objective

optimization algorithms, and to test a new automatic tun-

ing/control scheme. More details will be covered in later

sections.

THE SIMULATOR
Code Design
The goal of our code design is to ensure fast execution

and ease of use. This led us to adopt a combination of a low-

level compiled language, i.e. C++/CUDA and a high-level

scripting language, i.e. Python. The number-crunching is

efficiently carried out by CUDA and C++, however, the users

don’t have to deal with the complex syntax and the lengthy

compilation processes associated with them, but instead can

configure and execute a simulation with a high-level script.

Figure 1 shows the code hierarchy. The shallow learning

 CUDA C

 (.cu)

C++ (.cpp)

Python/C API (.cpp)

Python (.py)

Figure 1: Lower-level CUDA and C++ are wrapped up by

Python/C API and compiled into a shared library that can

be imported in Python.

curve of Python and the richness of its application libraries

allow users with the minimal programming experiences to

quickly prototype their ideas.

The major components of the code structure design are

shown in Figure 2. The components that are shaded in blue

Proceedings of HB2014, East-Lansing, MI, USA MOPAB30

Computational Challenges, New Concepts and New Projects

ISBN 978-3-95450-173-1

99 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

EPICS

DataServer

 SQL

database

 BeamLine

 (pinned

 memory)

 text output/

 control

 feedback

SimulationEngine

Beam

Graphical output

 (OpenGL)

CPU (host) GPU (device)

Figure 2: High level code structure and data flow indicated

by the arrows.

are generated and stored by the CPUs (host), while the ones

in yellow are generated and stored in the GPU (device) dur-

ing the simulation. The C APIs of the Experimental Physics

and Industrial Control System (EPICS) [2] have been used

to get real-time machine data from the accelerator control

system. The data are then stored in a SQLite database and

processed into model physics units that are required for the

simulations. The pinned memory (shaded in green) physi-

cally sits on the CPU side however, can be accessed by both

the CPU and the GPU. It is used in our case to store the beam

line information which has to be accessed by the GPU to

simulate a beam, and also needs to be updated by the CPU

using the information queried in real-time. More detailed

description about the code structure can be found in [3].

GPU Performance
One can refer to [3] for more details about the GPU al-

gorithms and optimization we have applied. We compared

the code performance using an Intel Xeon E5520 2.27GHz

CPU and a NVIDIA GTX 580 GPU (Fermi architecture).

For a section of beam line at LANSCE, up to 112 times

speedup has been achieved for beam transported without

space charge. A speedup factor up to 45 has been achieved

for the space charge routine.

Our initial test with the LANSCE CCL (4960 RF gaps +

206 quads + 460 drift spaces) on a NVIDIA Tesla K20 GPU

showed that it took the simulator about a second to push

32K particles through it without space charge, and about

10 seconds with space charge (> 6000 space charge kicks).
It is likely that this performance will improve as we do not

need to apply space charge kicks this often in the CCL due

to the lattice design and the diminishing effects of the space

charge for the higher energy beam. With a more intelligent

space charge routine and further GPU optimization, we can

expect the front-to-end simulation for the half mile 800-MeV

LANSCE linac to finish within just several seconds.

APPLICATIONS
Tuning Guide
At LANSCE, the half-mile long 800-MeV linac provides

both H+ and H− beams for user programs. The tune-up pro-

cedures usually begin with direct low-power beam measure-

ments and set up of the beam lines based on the predictions

from an envelope model. However, in the transition to high-

power operations, due to the lack of direct measurement of

the beam and a good modeling tool for the high power beam,

machine settings are empirically adjusted by operators to

achieve minimal beam loss along the linac. These adjust-

ments are usually done in a high dimensional parameter

space, which can make the tuning process lengthy, and the

machine settings subjective and inconsistent. This is where

the simulator can help. Once correctly calibrated, one can

use the simulator to predict beam properties at any location

along the linac for any beam condition. Therefore, the oper-

ators and physicists would no longer be tuning with limited

information, but instead are provided with new insight into

the beam propagation along the linac. Moreover, they can

simulate real beam distributions that are generated directly

from emittance scans.

Figure 3: Screen shot of the online simulator graphical out-

put. Left: 3D beam display in x, y, phase coordinates. Right:

transverse and longitudinal phase space plots.

Figure 3 shows part of the graphics interface of the simula-

tor. Figure 4 shows a simulated beam distribution at the end

of the 100-MeV DTL. One can clearly see the low-energy

particles in the longitudinal phase space that make it to the

end of the DTL. However, they become beam losses in the

chicane following the DTL. The bottom right plot shows the

appearance of the nonlinear beam core. The tail of the core

can also produce loss in the subsequent elements. These are

the features that only multi-particle simulations can provide.

They will be very useful in machine tuning especially in high

power operations. Figure 5 shows that the simulations can

reproduce the actual phase scan experiments for the DTL

and CCL to very high accuracy.

Multi-objective Optimization
We have used the simulator in combination with the multi-

objective optimization techniques to find optimal operational

settings in a high-dimensional parameter space [4]. Figure 6

shows the 2D projection of the estimated Pareto front in

the 3D objective space obtained both by the multi-objective

genetic algorithm (MOGA) (the left column) and the multi-

MOPAB30 Proceedings of HB2014, East-Lansing, MI, USA

ISBN 978-3-95450-173-1

100C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Computational Challenges, New Concepts and New Projects

Figure 4: Beam distribution at the end of the LANSCE DTL

(100 MeV). Top: beam distribution in x,x’ and y,y’. Middle:

phase space in x and y. Bottom: longitudinal phase space, φ,
w showing low-energy particles well below design energy,

and a closer look at the beam core around 100 MeV.

objective particle swarm optimization (MOPSO) (the right

column). For this graph, the three objectives the MO al-

gorithms are trying to minimize are the longitudinal phase

space and phase width at the end of the LANSCE DTL,

and power of the lost beam throughout the DTL. There are

11 free parameters for the algorithms to adjust including

quadrupole gradients and RF phases and amplitudes of the

four DTL tanks. The simulator acts as a virtual experimen-

tal environment and provides a cost functions for the MO

algorithms to minimize in the process. From this study, we

were able to find optimal operating conditions and the fact

that the MOPSO converges much faster than the MOGA.

Accelerator Automatic Tuning
An automatic accelerator tuning method has been devel-

oped using the simulator as its test bed [5]. This real-time

method can simultaneously tune several coupled compo-

nents of an accelerator to achieve good beam quality. Using

the simulator, it has proven to be very efficient and robust

to noise. It can even quickly adjust the beam to its best

condition with failing elements in the accelerator.

CONCLUSION
The GPU-based online simulator has been proven to be a

very useful tool for accelerator operations. By combining

Figure 5: Top: DTL tank 1 phase scan which utilizes an

absorber/collector diagnostic. Bottom CCL module 5 phase

scan, which utilizes beam phase measurement diagnostics.

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

ε z
to

ta
l [r

ad
 M

eV
]

NSGA-II 50
100
200
300

MOPSO 50
100
200
300

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 10 15 20 25 30 35 40 45 50 55

Δφ
 [r

ad
]

Power of lost beam after tank 2 [W]

NSGA-II 50
100
200
300

 10 15 20 25 30 35 40 45 50 55

Power of lost beam after tank 2 [W]

MOPSO 50
100
200
300

Figure 6: The 2D projections of the estimated 3D Pareto

front in the objective space obtained by the NSGA-II and

MOPSO at different iterations.

multiparticle beam physics algorithms with GPU technology

we are able to bring high-fidelity beam dynamics modeling

Proceedings of HB2014, East-Lansing, MI, USA MOPAB30

Computational Challenges, New Concepts and New Projects

ISBN 978-3-95450-173-1

101 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

capabilities to the control room environment in a cost effec-

tive way. Furthermore, by enabling real-time acquisition of

machine parameter setpoints, the simulator is able to track

the operation of the accelerator and provide operators and

physicists with new insight into beam performance in an

operational setting. The list of possible applications is by

no means limited to the examples given above. Instead, the

high-level Python interface enables the user to easily create

and explore new application. Further development of the

simulator and its applications are ongoing.

REFERENCES
[1] NVIDIA Corporation, CUDA C Programming Guide, 2014.

[2] EPICS, http://www.aps.anl.gov/epics

[3] X. Pang, L. Rybarcyk, GPU Accelerated Online Beam Dy-

namics Simulator for Linear Particle Accelerators, Computer

Physics Communications, 185, pp. 744-753, 2014.

[4] X. Pang, L. Rybarcyk, Multi-objective Particle Swarm and

Genetic Algorithm for the Optimization of the LANSCE Linac

Operation, Nuclear Instruments and Methods in Physics Re-

search Section A, 741, pp. 124-129, 2014.

[5] A. Scheinker, X. Pang, and L. Rybarcyk, Model Independent

Particle Accelerator Tuning, Physics Review Special Topics -

Accelerators and Beams, 16, 102803, 2013.

MOPAB30 Proceedings of HB2014, East-Lansing, MI, USA

ISBN 978-3-95450-173-1

102C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Computational Challenges, New Concepts and New Projects

