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Abstract
Three-dimensional Poisson solver plays an important role

in the self-consistent space-charge simulation. In this paper,
we present several efficient 3D Poisson solvers inside an
open rectangular conducting pipe for space-charge simula-
tion. We describe numerical algorithm of each solver, show
comparative results for these solvers and discuss the pros
and cons associated with each solver.

INTRODUCTION
Nonlinear space-charge effect in charged particle beam

has significant impact to particle beam dynamics in high
intensity accelerators. A natural way to include the space-
charge effect in the simulation is through self-consistent
particle-in-cell (PIC) method [1–4]. In the PIC method,
macroparticles are advanced step by step in phase space sub-
ject to both the external forces and the space-charge forces.
Normally, at each step, the external forces can be quickly
computed using the given external fields. The space-charge
forces are calculated self-consistently using the charge den-
sity distribution at that step by solving the Poisson equation.
This involves a large number of numerical operations and
is much more computational expensive compared with the
external force calculation. An efficient Poisson solver will
be of importance in the PIC simulation in order to quickly
calculate the space-charge forces and to reduce the total
simulation time.
In previous studies, a number of Poisson solvers have

been studied subject to different boundary conditions [5–
12]. In this paper, we proposed three new Poisson solvers
in an open rectangular conducting pipe. Figure 1 shows
a schematic plot of charged particle beam inside an open
rectangular conducting pipe. Even with the longitudinal
open boundary condition, these three Poisson solvers will
use a computational domain that longitudinally contains the
beam itself. No extra computational domain is needed in the
longitudinal direction in order to meet the open boundary
conditions on both sides of the beam.

Figure 1: A schematic plot of a charged particle beam inside
an open rectangular conducting pipe.
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NUMERICAL METHODS
For a perfect conducting pipe with rectangular cross sec-

tion, we write the three-dimensional (3D) Poisson equation
as:

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= −

ρ

ε0
(1)

Here, φ denotes the electrostatic potential, ρ the dimension-
less charge density function, x, y and z denote the horizon-
tal, vertical, and longitudinal coordinates respectively. The
boundary conditions for the potential in the open perfect
rectangular conducting pipe are:

φ(x = 0, y, z) = 0 (2)
φ(x = a, y, z) = 0 (3)
φ(x, y = 0, z) = 0 (4)
φ(x, y = b, z) = 0 (5)

φ(x, y, z = ±∞) = 0 (6)

where a is the horizontal width of the pipe and b is the
vertical width of the pipe. In the following, we propose three
efficient numerical methods to solve the Poisson equation
subject to above boundary conditions.

Spectral-Integrated Green Function Method
Given the boundary conditions in Eq. 2-6, the potential φ

and the source term ρ can be approximated using two sine
functions as:

ρ(x, y, z) =
Nl∑
l=1

Nm∑
m=1

ρlm(z) sin(αl x) sin(βm y) (7)

φ(x, y, z) =
Nl∑
l=1

Nm∑
m=1

φlm(z) sin(αl x) sin(βm y) (8)

where

ρlm(x, y, z)=
4

ab

a∫
0

b∫
0

ρ(x, y, z) sin(αl x) sin(βm y) dxdy

(9)

φlm(x, y, z)=
4

ab

a∫
0

b∫
0

φ(x, y, z) sin(αl x) sin(βm y) dxdy

(10)
where αl = lπ/a and βm = mπ/b. Substituting above
expansions into the Poisson equation and making use of the
orthnormal conditions of the sine functions, we obtain

∂2φlm(z)
∂z2

− γ2lmφ
lm(z) = −

ρlm

ε0
(11)
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where γ2lm = α2
l
+ β2m . The above ordinary differential

equation for each mode lm can be solved using a Green
function method. This solution can be written as:

φlm(z) =
1

2γlmε0

∫
Glm(z − z′)ρlm(z′) dz′ (12)

where the Green function G is given by:

Glm(z − z′) = exp (−γlm |z − z′ |) (13)

The above convolution integral can be discretized on a mesh
that longitudinally contains only the beam. The discrete
potential on a grid point zi , i = 1, · · · ,Nz is given as:

φlm(zi ) =
hz

2γlmε0

Nz∑
j=1

Glm(zi − z j )ρlm(z j ) (14)

where hz = (zmax− zmin)/(Nz −1), zmin is the minimum and
maximum locations of the beam along the z direction, and
Nz is the number of grid points. The direct brute-force cal-
culation of above summation for all Nz grid data points takes
O(N2

z ) operations. Fortunately, by using the zero padding
method [12–15], the computational cost of the summation
for all Nz data points can be reduced to O(Nz log(Nz )).
The Green function given in Eq. 13 is exponentially

damped with the increase of the separation between two
grid points. In the numerical calculation of Eq. 12, resolv-
ing such fast damping may not be necessary if the variation
of beam density along z is slow. The convolution integral
Eq. 12 can be rewritten as

φlm(z) =
1

2γlmε0

∑
j

∫ z j+hz /2

z j−hz /2
Glm(z − z′)ρlm(z′) dz′ (15)

If we assume that the charge density ρlm stays constant within
the interval [z j − hz/2, z j + hz/2], the above equation can
be reduced into:

φlm(z) =
1

2γlmε0

∑
j

Gint
lm (z − z j )ρlm(z j ) (16)

where

Gint
lm (z − z j ) =

∫ z j+hz /2

z j−hz /2
Glm(z − t) dt (17)

Substituting Eq. 13 into above equation, we obtain the inte-
grated Green’s function as:

Gint
lm (zi − z j ) =




exp (γlm |zi−z j |)
γlm

(exp (γlmhz/2)−
exp (−γlmhz/2)), if i , j
2
γlm

(1 − exp (−γlmhz/2)) otherwise
(18)

Using the integrated Green’s function Gint , the convolution
summation Eq. 16 can be calculated using the same zero
padding method as the standard Green function method.
The advantage of this method is that the fast decrease of the
Green function does not need to be resolved in the numerical

approximation to the convolution integral 12, which can
significantly save computational resources.

The numerical calculation of the sine function transform
in both x and y directions can be done efficiently using
an FFT method. The computational cost in transverse x
and y dimensions scales as O(Nx Ny Nz (log(Nx Ny )). Us-
ing the zero padding and the FFT for the cyclic summa-
tion, the cost to compute the convolution also scales as
O(Nx Ny Nz log(Nz )). This results in a total computational
cost to solve the 3D Poisson equation in an open conducting
pipe scaling as O(Nx Ny Nz log(Nx Ny Nz )).

3D Spectral Method
In many accelerator physics application, the longitudi-

nal density distribution of the charged particle beam has a
Gaussian distribution. This suggests that the ordinary dif-
ferential equation 11 can also be solved efficiently using a
Hermite-Gaussian expansion, which naturally satisfies the
open boundary conditions (Eq. 6) in the z direction.

The charge density ρ and electrostatic potential φ can be
approximated as:

ρlm(z) =
n=Nn∑
n=0

ρlm
n Hn (z) (19)

φlm(z) =
n=Nn∑
n=0

φlm
n Hn (z) (20)

where the scaled Hermite-Gaussian functionHn is defined
as:

Hn (z) = Hn (
z
A

) exp (−
1
2

z2

A2 ) (21)

where A is a longitudinal scaling constant, which can be
A = σz with σz the beam longitudinal RMS size, Hn is the
nth order Hermite polynomial with properties: H0(z) = 1,
H1(z) = 2z, · · · , Hn (z) = 2zHn−1 − 2(n − 1)Hn−2. The
scaled Hermite-Gaussian functionH has the properties:∫ ∞

−∞

Hn (z)Hm (z)dz = 2nn!
√
πAδnm (22)

and

∂2Hn

∂z2
=

1
4A2Hn+2 +

n(n − 1)
A2 Hn−2 −

2n + 1
2A2 Hn (23)

where δmn = 1 for m = n and δmn = 0 for m , n. The
expansion coefficients ρn and φn can be obtained from

ρlm
n =

1
2nn!

√
πA

∫ ∞

−∞

ρlm(z)Hn (z)dz (24)

φlm
n =

1
2nn!

√
πA

∫ ∞

−∞

φlm(z)Hn (z)dz (25)

Substituting the functions ρ and φ into the Eq. 11, and using
the orthogonality of the scaled Hermite-Gaussian functions
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and Eq. 22, the Poisson equation is reduced into a group of
linear algebraic equations:

1
4
φlm
n−2 − (

1
2

(2n + 1) + γ2lm A2)φlm
n + (n + 2)(n + 1)φlm

n+2

= −A2ρlm
n /ε0
(26)

where n = 1,2, · · · ,Nn and Nn is the number of Hermite-
Gaussian modes. This group of algebraic equations is a band-
limited matrix equation, which can be solved effectively us-
ing direct Gaussian elimination with a computational cost of
O(Nn ) for each transverse mode l and m, which results in
a total cost as O(Nl NmNn ). The computational cost of the
sine transform scales as O(Nx Ny Nz log(Nx Ny ). The calcu-
lation of the Hermite-Gaussian expansion coefficients are
more expensive and scales as O(Nl NmNnNz ). If the num-
ber of Hermite-Gaussian modes can be controlled within a
reasonable limit taking advantage of the high order accuracy
of the spectral method, this method can still be very efficient.
Another advantage of this method is that it provides a natu-
ral smoothing of electrostatic function in the self-consistent
particle-in-cell simulation by neglecting the high frequency
modes in the expansion.

3D Integrated Green Function Method
Another method to solve the 3D Poisson equation inside

the open rectangular pipe is to use an integrated Green func-
tion method directly. This method has the advantage of
using a computational domain that contains only the beam
itself instead of the whole transverse pipe cross-section. The
solution of the 3D Poisson equation can be written as:

φ(x, y, z) =
2

abε0

∞∑
l=1

∞∑
m=1

1
γlm

sin(αl x) sin(βm y)×∫ xmax

xmin

∫ ymax

ymin

∫ zmax

zmin

sin(αl x ′) sin(βm y′)×

exp(−γlm |z − z′ |)ρ(x ′, y′, z′) dx ′dy′dz′ (27)

The above equation can be rewritten as:

φ(x, y, z) =
1

2abε0

∫ xmax

xmin

∫ ymax

ymin

∫ zmax

zmin

∞∑
l=1

∞∑
m=1

1
γlm

[cos(αl (x − x ′)) − cos(αl (x + x ′))] ×

(cos(βm (y − y′)) − cos(βm (y + y′))) ×
exp(−γlm |z − z′ |)ρ(x ′, y′, z′) dx ′dy′dz′ (28)

Following the same idea of preceding section, we can define
a three-dimensional integrated Green’s function as:

Gint
3D (x, x ′, y, y′, z, z′) =

1
2abε0

(R(x − x ′, y − y′, z − z′)−

R(x − x ′, y + y′, z − z′) − R(x + x ′, y − y′, z − z′)+
R(x + x ′, y + y′, z − z′))

(29)

where

R(u,v,w) =
∞∑
l=1

∞∑
m=1

1
αl βm

[sin(αl (u − hx/2)) −

sin(αl (u + hx/2))] ×
(sin(βm (v − hy/2)) − sin(βm (v + hy/2)))Gint

lm (w) (30)

The discrete potential on a grid (i, j, k) can be written as:

φ(xi , y j , zk ) =
Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

Gint
3D (xi , y j , zk , x ′i , y

′
j , z
′
k ) ×

ρ(x ′i , y
′
j , z
′
k ) (31)

The above summation can also be calculated on a doubled
computational domain using an FFT-based zero padding
method. In order to compute this summation using the
FFT-based method, besides the direct convolution term
R(x − x ′, y − y′, z − z′)ρ(x ′, y′, z′), there are also terms
that contain auto-correlation in R(x − x ′, y + y′, z − z′),
R(x + x ′, y− y′, z− z′), and R(x + x ′, y+ y′, z− z′). It turns
out that those auto-correlations can be handled in a similar
way to the convolution term except that a backward/forward
FFT is used in the dimension with auto-correlation while a
forward/backward FFT is used in the dimension of convolu-
tion [12]. The computational cost for such cyclic summation
scale as O(Nx Ny Nz log(Nx Ny Nz )).

NUMERICAL TESTS
In the following, we show a numerical test example for

above proposed algorithms. Here, we assume that the beam
has a 3D normalized Gaussian density distribution as:

ρ(x, y, z) = exp(−
(x − x0)2

2σ2
x

−
(y − y0)2

2σ2
y

−
(z − z0)2

2σ2
z

) (32)

where σx , σy , and σz denote RMS (root mean square) sizes
of the beam, and x0, y0, and z0 denote the centroid of the
beam. We assume that the transverse aperture sizes of the
pipe a = b = 2, transverse RMS beam sizes σx = σy = 1/6,
and σz = 100/6. This results in an aspect ratio A = 100 for
the beam. The computational grid used in this example is
65 × 65 × 64.
Figure 2 shows the electrostatic potential solution and

the relative errors along the central horizontal axis from
the above three numerical methods (the spectral-integrated
Green’s function, the 3D spectral method, the 3D integrated
Green’s function method) and the analytical solution. All
three methods have relative errors below 0.1%. The 3D
spectral method has the least relative errors as expected.
The 3D integrated Green’s function method has the largest
relative errors but is still below 0.1%.
Figure 3 shows the electrostatic potential solutions and

relative errors along center longitudinal axis in this test ex-
ample using the three numerical methods together with the
analytical solution. All three methods give a good approxi-
mation to the analytical solution with the maximum relative
error below 0.1%. Again, the 3D spectral method shows the
least relative error among the three methods.
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Figure 2: The electrostatic potential solutions (top) and
relative errors (bottom) along the horizontal axis from the
three proposed numerical algorithms and from the analytical
solution.

CONCLUSIONS
In this paper, we presented three 3D Poisson solvers to cal-

culate the electrostatic potential of a charged particle beam
in an open conducting rectangular pipe. Those three Poisson
solvers effectively save the computational resource by us-
ing a computational domain that longitudinally contains the
beam itself. The spectral-integrated Green function solver
and the 3D integrated Green function solver have a compu-
tational complexity of O(N log(N )), where N is the total
number of grid points. The computational cost of the 3D
spectral solver scales as O(NnN ), where Nn is the number
of Hermite-Gaussian modes used in the solution. Given
the fast convergence rate of the spectral solver, the mode
number might be kept as small. In the scaling estimation,
all these three Poisson solvers are efficient in the numeri-
cal operations. In practical application, the 3D integrated
Green function method is most time consuming due to the
double summation in the calculation of the Green function.
However, it has the advantage that the computational do-
main only needs to contain the beam itself in both transverse
and longitudinal directions. This saves computational cost
when the transverse size of the beam is much smaller than
the transverse pipe aperture. The 3D spectral solver has an
extra cost factor depending on the Hermite-Gaussian mode
number. However, this solver normally leads to less numer-
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Figure 3: The electrostatic potential solutions (top) and
relative errors (bottom) along the longitudinal axis from the
three proposed numerical algorithms and from the analytical
solution.

ical error and can also provide smooth potential solution
when the charge density function contains numerical noise
from the discrete macroparticle deposition in the PIC simu-
lation. The spectral-integrated Green function solver has a
numerical accuracy between the 3D spectral solver and the
3D integrated Green function solver, but a very favorable
computational cost scaling.
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