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Abstract
The transverse decoherence of the bunch signal after an

initial bunch displacement is an important process in syn-

chrotrons and storage rings. It can be useful, for the diag-

nostic purposes, or undesirable. Collective bunch oscilla-

tions can appear after the bunch-to-bucket transfer between

synchrotrons and can lead to the emittance blow-up. In

order to preserve the beam quality and to control the emit-

tance blow-up, transverse feedback system (TFS) are used.

In heavy ion and proton beams, like in SIS18 and SIS100

synchrotrons of the FAIR project, transverse space charge

strongly modify decoherence. The resulting bunch deco-

herence and beam blow-up is due to a combination of the

lattice settings (like chromaticity), nonlinearities (residual

or imposed by octupole magnets), strong space-charge, and

the TFS. We study these effects using particle tracking sim-

ulations with the objective of correct combinations for a

controlled beam blow-up.

DECOHERENCE DUE TO TRANSVERSE
NONLINEARITY AND CHROMATICITY
A beam after an initial transverse displacement performs

betatron oscillations. In the absence of collective effects, the

evolution of the beam centroid has been described in [1, 2].

Calculations are performed for the case of transverse nonlin-

earity in one plane, the initial Gaussian distribution (GS) in

(x, x ′), the linear synchrotron motion and the Gaussian en-
ergy distribution. Extension to 2-D, including x− y coupling
in the tune dependence from amplitudes, is addressed in [3].

Here we present the 1D results for the KV (Kapchinsky-

Vladimirsky) distribution in the transverse plane in the case

of uncoupled transverse oscillations and compare with the

results for the GS distribution and with particle tracking

simulations.

We use the constant focusing for derivations and for sim-

ulations. In this case it is convenient to use the normalized

coordinates,

q =
x
σx0

and p =
Rx ′

Q0σx0
, (1)

where R is the ring radius, Q0 is the bare tune, σx0 =√
Rε rms0/Q0 is the initial rms beam size, ε rms0 is the ini-

tial rms emittance. We normalize the initial beam offset in

x plane by defining Z = Δx/σx0. The amplitude a and the
phase φ of single particle oscillations are defined by relations
q = a cos(φ) and p = −a sin(φ), where a =

√
q2 + p2.
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Figure 1: Beam profiles at different turn numbers for the

KV (top plot) and for the GS (bottom plot) distributions.

Crosses are simulation results. Solid lines are obtained by

the numerical integration of Eq. (7). Z = 3, Q0 = 4.18,
qnl = 0.3.

The initial beam distribution at turn N = 0 is

ρ0(a, φ0) =
a
4π

H
[
1 − 1

4

(
a2 + Z2 − 2aZ cos(φ0)

)]
, (2)

where H is the Heaviside function and φ0 is the initial be-
tatron phase of the particle. External nonlinearities induce

amplitude-dependent incoherent tune shifts. We assume that

a transverse nonlinearity is produced by the cubic component

of the octupole magnetic field,

Bx = −K3
Bρ
6

y3, By = K3
Bρ
6

x3,

with K3 =
1

Bρ
d3By

dx3
. (3)

The resulting tune shift in x plane is given by

ΔQnl(a) = −K3R3

16Q2
0

ε rms0a2 = −μa2, (4)
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where μ is the lattice detuning. The parameter for the effect
of transverse nonlinearity is defined as a ratio of the non-

linearity tune shift Eq. (4) of a particle with the amplitude

a = 2 to to the synchrotron tune Qs,

qnl =
4μ

Qs
. (5)

For single particle motion the amplitude a stays constant
and the phase changes as

φ = φ0 + 2πN (Q0 − μa2) = φ0 + ΔφN . (6)

This allows us to get the particle distribution at arbitrary turn

number N with substitution of φ0 by (φ − ΔφN ) in Eq. (2).
Using Eqs. (2) and (6) a beam profile can be calculated as

ρ(q) =
1

4π

∫
dpH

[
1 − 1

4
(q − Z cos(ΔφN ))2 (7)

− 1

4
(p − Z sin(ΔφN ))2

]
.

and Figure 1 demonstrates a comparison of the beam profiles

for the GS and the KV distributions at different turn numbers.

N = 2000 corresponds to complete filamentation of the

initial distribution due to transverse nonlinearities.

In the case of the linear synchrotron oscillation the tune

shift due to chromaticity is defined as

ΔQξ = ξQ0δ (8)

where ξ is the normalized chromaticity and δ = Δp/p0 is
the relative momentum offset of the particle.

Similar to [1, 2] we calculate time evolution of the beam

centroid. The amplitude is

AKV =
√
〈q〉2 + 〈p〉2 = J1(2Zθ)

θ
Fξ , (9)

and the phase is

ψ = 2πN
(
Q0 − μ(4 + Z2)

)
, (10)

where Jn is the Bessel function of the first kind of the nth

order, θ = 4πμN is the normalized time and the chromatic

factor Fξ ,

Fξ = exp

⎡⎢⎢⎢⎢⎣−2
(
ξQ0σδ

Qs

)2
sin2(πQsN )

⎤⎥⎥⎥⎥⎦ , (11)

which provides an additional modulation due to the syn-

chrotron motion with the tune Qs [1], where σδ is the nor-
malized rms momentum spread.

For comparison, the amplitude evolution for the initial

GS distribution is given by [2]

AGS =
ZFξ

1 + θ2
exp

[
− Z2θ2

2(1 + θ2)

]
. (12)

The second momenta are given by

⎡⎢⎢⎢⎢⎢⎣
〈q2〉
〈qp〉
〈p2〉

⎤⎥⎥⎥⎥⎥⎦ =
(
1 +

Z2

2

) ⎡⎢⎢⎢⎢⎢⎣
1

0

1

⎤⎥⎥⎥⎥⎥⎦ +
ZF2

ξ J1(4Zθ)

4θ

⎡⎢⎢⎢⎢⎢⎣
cos(2ψ)
− sin(2ψ)
− cos(2ψ)

⎤⎥⎥⎥⎥⎥⎦
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Figure 2: Time evolution of the beam offset amplitude and

of the rms emittance for the KV (top plot) and for the GS

(bottom plot) distributions. Black curves are simulation

results, red curves are given by Eq. (9), green curves are

given by Eq. (12) and blue curves are given by Eq. (14). Z
= 3, Q0 = 4.18, qnl = 0.3.

+
F2
ξ J2(4Zθ)

2θ

⎡⎢⎢⎢⎢⎢⎣
sin(2ψ)
− cos(2ψ)
− sin(2ψ)

⎤⎥⎥⎥⎥⎥⎦ (13)

Using Equations (9, 10, 13) we calculate the normalized

rms beam size and the normalized rms emittance as σq =√〈q2〉 − 〈q〉2 and
ε rms = ε rms0

√
σ2qσ

2
p − (〈qp〉 − 〈q〉〈p〉)2 (14)

correspondingly. Figure 2 shows a comparison of the offset

amplitude Abunch and the rms emittance from particle track-

ing simulations for both distributions of the same initial rms

size with Eqs. (9, 12, 14). According to Eq. (14), the final

emittance does not depend on the initial distribution and for

N → ∞ we have

ε rms = ε rms0(1 + Z2/2) (15)

DECOHERENCE WITH SPACE CHARGE
The particle tracking code PATRIC [4] is used to study to

damping of coherent oscillations and emittance blow-up due

to decoherence with space charge [5]. As have been shown

in Fig. 1 the beam profile significantly changes from the

initial shape during the filamentation process. It requires to

use a 2.5D self-consistent space charge solver in simulations.
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Figure 3: Time evolution of the bunch offset amplitude for

the KV (top plot) and for the GS (bottom plot) distributions

for qnl = 1.
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Figure 4: Time evolution of the rms emittance for the KV

(top plot) and for the GS (bottom plot) distributions for

qnl = 1. Solid lines are ε x , dashed lines are ε y .
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Figure 5: Time evolution of the bunch offset amplitude for

the KV (top plot) and for the GS (bottom plot) distributions

for qnl = −1.
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Figure 6: Time evolution of the rms emittance for the KV

(top plot) and for the GS (bottom plot) distributions for

qnl = −1. Solid lines are ε x , dashed lines are ε y .
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Transverse space charge effects are described using the

characteristic tune shift,

ΔQsc =
λ0rpR
γ3 β2ε⊥

(16)

where β and γ are the relativistic parameters, rp =

q2
ion
/4πε0mc2 is the classical particle radius, λ0 is the peak

line density (at the bunch center), and ε⊥ is the transverse
total emittance. The tune shift corresponds to a round cross

section with the KV distribution, and is defined as the mod-

ulus of the negative shift. In the rms-equivalent bunch with

the GS transverse profile, i.e., the transverse rms emittance

is ε rms = ε⊥/4, the maximum space charge tune shift is

twice this value, ΔQmax
sc = 2ΔQsc. The parameter for the

effect of space charge in a bunch is defined as a ratio of the

characteristic tune shift Eq. (16) to the synchrotron tune,

qsc =
ΔQsc

Qs
. (17)

All simulations below are performed for Qs = 0.01, Q0 =

4.18, Z = 1 and ξ = 0. Figures 3 and 4 demonstrate particle
tracking simulations for an initially offset bunch with a round

cross section for the KV (top plots) and the GS (bottom

plots) distributions, for qnl = 1. For qsc = 0 (black lines) in
Fig. 3 we see fast decrease of the bunch offset amplitude,

as expected from Eqs. (9, 12), but for qsc = 0.3 the bunch
offset oscillations are not finally damped. For stronger space

charge initial behavior of the bunch offset corresponds to

Eqs. (9, 12) and then it changes to a different damping regime.

In Fig. 4 one can see that the rms emittance approaches the

asymptotic value (Eq. 15) only for qsc = 0 and for qsc = 0.3
in a bunch with the initial KV distribution. Note a slow

emittance increase in both transverse planes for qsc > 1.

According to simulations, the emittance blow-up for both

initial distributions is comparable.

In Figures 5 and 6 we show particle tracking simulations

for the same bunch parameters in case of opposite polarity of

transverse nonlinearity qnl = −1 for the KV (top plots) and

the GS (bottom plots) distributions. Damping of coherent

oscillations is faster for both distributions in comparison

to the case of qnl = 1 (Fig. 3) . The final emittance in x
plane for the GS distribution reaches the asymptotic value

(Eq. 15) for all cases and is negligible in y plane. In the case

of moderate and strong space charge for the KV distribution

we observe the smaller emittance increase in x plane than
for the GS distribution.

As we can see the damping process extremely depends on

the sign of the transverse nonlinearity tune shift in the case

of moderate and strong space charge. Figure 7 demonstrates

comparison of the final particle distribution in a normalized

phase space for qnl = 1 and qnl = −1 with the initial KV
distribution. Strong space charge (qsc = 4) in combination
with nonlinearity polarity provides different redistribution of

particles in the phase space and different emittance increase.

To understand these effects an additional study is required.

TRANSVERSE FEEDBACK SYSTEM VS
DECOHERENCE

In our simulations we use a simplified transverse feedback

system (TFS) module with two elements: a beam position

monitor (BPM) which measures the bunch offset and com-

bines values from two turns to provide the correctional signal

ΔpN with the required phase for the kicker. For the constant

focusing lattice the correctional signal is given by

ΔpN = GqN
cos(Δφ + 2πQ0)

sin(2πQ0)

−GqN−1
cos(Δφ + 4πQ0)

sin(2πQ0)
, (18)

where Δφ is the phase advance between the BPM and the

kicker, G is the TFS gain which defines the damping time,

NTFS =
2

G
. (19)

In this model we assume that the TFS module has no

bandwidth limitations, delay errors and noise amplification.

In order to prevent emittance blow-up the damping time
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Figure 7: A particle density in the normalized phase space (p,q) for the initial KV distribution at N = 0 (left plot), N = 1000
qnl = 1 (center plot) and N = 1000 qnl = −1 (right plot), qsc = 4.
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Figure 8: Time evolution of the bunch offset amplitude (top

plot) and the rms emittance (bottom plot) for the initial GS

distribution with TFS (solid lines) and without TFS (dashed

lines). The parameters of simulations: qnl = 1, qsc = 0; 4,
NTFS = 10, Δφ = π/8 .

NTFS should be smaller than characteristic decoherence time.

Figure 8 shows an example of particle tracking simulations of

an initially offset bunch with a round cross section for the GS

distribution, for Z = 1, qnl = 1 and the TFS damping time
NTFS = 10 turns. For comparison dashed lines correspond

to simulations without TFS. We see that a simplified TFS

module can considerably reduce the emittance blow-up due

to transverse nonlinearity and space charge. The emittance

increase with TFS in y plane is smaller than 1% and is not

shown. One can also see that space charge could be helpful

for emittance preservation.

CONCLUSIONS
The analytical prediction of emittance blow-up due to

bunch decoherence with transverse nonlinearities for the

initial transverse Kapchinsky-Vladimirsky distribution has

been derived and compared, with the case of the initial Gaus-

sian distribution. The bunch offset decoherence and trans-

verse emittance blow-up have been studied using the particle

tracking code PATRIC for different space charge strength.

The different damping regimes of coherent oscillations for

positive and negative polarity of octupole nonlinearity have

been observed. The emittance blow-up reduction using an

ideal Transverse Feedback System module has been shown.
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