Author: Wasef, R.
Paper Title Page
WEO4AB02 New PSB H Injection and 2 GeV Transfer to the CERN PS 320
 
  • W. Bartmann, J.L. Abelleira, B. Balhan, E. Benedetto, J. Borburgh, C. Bracco, C. Carli, G.P. Di Giovanni, V. Forte, S.S. Gilardoni, B. Goddard, G. Gräwer, K. Hanke, M. Hourican, A. Huschauer, M. Meddahi, B. Mikulec, G. Rumolo, L. Sermeus, R. Steerenberg, G. Sterbini, Z. Szoke, R. Wasef, Y. Wei, W.J.M. Weterings
    CERN, Geneva, Switzerland
 
  At CERN Linac4 is being commissioned as first step in the LHC injector upgrade to provide 160 MeV H ions. In order to fully deploy its potential, the PSB conventional multiturn injection will be replaced by a charge exchange injection. An expected brightness improvement of about a factor 2 would then be difficult to digest at PS injection due to space charge. Therefore the transfer energy between PSB and PS will be increased at the same time from 1.4 to 2 GeV. This paper describes the new PSB injection system and the status of its test stand. Modifications of the PSB extraction and recombination septa and kickers in the transfer line are shown. A new focussing structure for the transfer lines to match the horizontal dispersion at PS injection and the design of a new eddy current septum for the PS injection are presented.  
slides icon Slides WEO4AB02 [2.867 MB]  
 
THO1LR01 Long-term Beam Losses in the CERN Injector Chain 325
 
  • S.S. Gilardoni, G. Arduini, H. Bartosik, E. Benedetto, H. Damerau, V. Forte, M. Giovannozzi, B. Goddard, S. Hancock, K. Hanke, A. Huschauer, M. Kowalska, M. McAteer, M. Meddahi, B. Mikulec, E. Métral, Y. Papaphilippou, G. Rumolo, E.N. Shaposhnikova, G. Sterbini, R. Wasef
    CERN, Geneva, Switzerland
 
  For the production of the LHC type beams, but also for the high intensity ones, the budget allocated to losses in the CERN injector chain is maintained as tight as possible, in particular to keep as low as possible the activation of the different machine elements. Various beam dynamics effects, like for example beam interaction with betatronic resonances, beam instabilities, but also reduced efficiency of the RF capture processes or RF noise, can produce losses even on a very long time scale. The main different mechanisms producing long term losses observed in the CERN injectors, and their cure or mitigation, will be revised.  
slides icon Slides THO1LR01 [5.913 MB]  
 
THO1LR03 Recent Development in the Mitigation of Long Term High Intensity Beam Loss 330
 
  • G. Franchetti, S. Aumon, F. Kesting, H. Liebermann, C. Omet, D. Ondreka, R. Singh
    GSI, Darmstadt, Germany
  • S.S. Gilardoni, A. Huschauer, F. Schmidt, R. Wasef
    CERN, Geneva, Switzerland
 
  In this talk it is presented the state of the art studies to mitigate the long term beam loss in the FAIR accelerator. The effect of high intensity is discussed in relation with high intensities. In particular the discussion is made on the interplay of space charge with coupled machine resonance as the 3rd order. A new development in the theory of the 3rd order resonance is used to discuss the periodic crossing of resonances, hence the mitigation of the resonance effects, and experimental investigation (CERN-PS, and GSI) are addressed and interpreted.