Author: Hancock, S.
Paper Title Page
TUO1AB02 Upgrades of the RF Systems in the LHC Injector Complex 165
 
  • H. Damerau, M.E. Angoletta, T. Argyropoulos, P. Baudrenghien, A. Blas, T. Bohl, A.C. Butterworth, A. Findlay, R. Garoby, S.S. Gilardoni, S. Hancock, W. Höfle, J.C. Molendijk, E. Montesinos, M.M. Paoluzzi, D. Perrelet, C. Rossi, E.N. Shaposhnikova
    CERN, Geneva, Switzerland
 
  In the framework of the LHC Injector Upgrade (LIU) project the radio-frequency (RF) systems of the synchrotrons in the LHC injector chain will undergo significant improvements to reach the high beam intensity and quality required by the High-Luminosity (HL) LHC. Following the recent upgrade of the longitudinal beam control system in the PS Booster (PSB), tests with Finemet cavities are being performed in view of a complete replacement of the existing RF systems in the PSB by ones based on this technology. In the PS a similar wide-band Finemet cavity has been installed as a longitudinal damper. New 1-turn delay feedbacks on the main accelerating cavities to reduce their impedance have also been commissioned. Additional feedback and beam control improvements are foreseen. A major upgrade of the main RF system in the SPS by regrouping sections of its travelling wave cavities, increasing the number of cavities from four to six, will reduce beam-loading and allow higher intensities to be accelerated. The upgrade includes the installation of two new RF power plants and new feedback systems. All upgrades will be evaluated with respect to their expected benefits for the beams to the LHC.  
slides icon Slides TUO1AB02 [4.317 MB]  
 
THO1LR01 Long-term Beam Losses in the CERN Injector Chain 325
 
  • S.S. Gilardoni, G. Arduini, H. Bartosik, E. Benedetto, H. Damerau, V. Forte, M. Giovannozzi, B. Goddard, S. Hancock, K. Hanke, A. Huschauer, M. Kowalska, M. McAteer, M. Meddahi, B. Mikulec, E. Métral, Y. Papaphilippou, G. Rumolo, E.N. Shaposhnikova, G. Sterbini, R. Wasef
    CERN, Geneva, Switzerland
 
  For the production of the LHC type beams, but also for the high intensity ones, the budget allocated to losses in the CERN injector chain is maintained as tight as possible, in particular to keep as low as possible the activation of the different machine elements. Various beam dynamics effects, like for example beam interaction with betatronic resonances, beam instabilities, but also reduced efficiency of the RF capture processes or RF noise, can produce losses even on a very long time scale. The main different mechanisms producing long term losses observed in the CERN injectors, and their cure or mitigation, will be revised.  
slides icon Slides THO1LR01 [5.913 MB]