

Halo Collimation of Ion Beams

I. Strašík¹ and O. Boine-Frankenheim

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

Introduction

> Beam dynamics processes \rightarrow halo formation \rightarrow uncontrolled beam losses

Beam losses can cause:

- Superconducting magnets quenches
- Vacuum degradation due to desorption process
- Activation of the accelerator structure
- Radiation damage of the equipment and devices

[Ref] K. Wittenburg, CERN Accelerator School: Course on Beam Diagnostics, 557 (2008).

Purpose of the halo collimation:

- To remove the halo \rightarrow prevent or reduce above mentioned problems
- To provide a well defined (and shielded) storing location for beam losses

FAIR project (Facility for Antiproton and Ion Research) at GSI

- Future SIS100 synchrotron ↔ present SIS18 synchrotron beam intensity increase: ~ factor of 100, beam energy increase: ~ factor of 10
- SIS100 will accelerate various ion species from proton up to uranium fully-stripped ions (e.g. ⁴⁰₁₈Ar¹⁸⁺), partially-stripped ions (e.g. ²³⁸₉₂U²⁸⁺)

Need for halo collimation in SIS 100

- Protons and light ions activation ("hands-on" maintenance limit 1 W/m)
- Heavy ions vacuum degradation due to desorption, radiation damage

Two-stage betatron collimation system

Well established in proton accelerators

- Primary collimator (thin foil) scattering of the halo particles
- Secondary collimators (bulky blocks) absorption of the scattered particles

Particles have small impact parameter on the primary collimator.

The impact parameter at the secondary collimator is enlarged due to scattering \rightarrow reduced leakage of the particles.

[Ref] M. Seidel, DESY Report, 94-103, (1994).

[Ref] T. Trenkler and J.B. Jeanneret, Particle Accelerators 50, 287 (1995).

[Ref] J.B. Jeanneret, Phys. Rev. ST Accel. Beams 1, 081001 (1998).

[Ref] T. Wei and Q. Qin, Nucl. Instrum. Methods Phys. Res. Sect. A 566, 212 (2006).

[Ref] K. Yamamoto, Phys. Rev. ST Accel. Beams 11, 123501 (2008).

[Ref] N. Mokhov et al., Fermilab-Pub-11-378-APC (2011).

Normalized phase space plots at the collimators

2. secondary collimator

particle transport

$$\begin{pmatrix} X_{S} \\ X'_{S} \end{pmatrix} = M \begin{pmatrix} X_{P} \\ X'_{P} \end{pmatrix}$$
$$M = \begin{pmatrix} \cos\mu_{S} & \sin\mu_{S} \\ -\sin\mu_{S} & \cos\mu_{S} \end{pmatrix}$$

 $\begin{pmatrix} X \\ X' \end{pmatrix} = \frac{1}{\sigma_x} \begin{pmatrix} 1 & 0 \\ \beta_x & \alpha_x \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix} \qquad \sigma_x = \sqrt{\beta_x \varepsilon_x}$

particle coordinates at the primary collimator

 $X_P = n_P \qquad \qquad X'_P = 0$

[Ref] T. Trenkler and J.B. Jeanneret, Particle Accelerators 50, 287 (1995). [Ref] J.B. Jeanneret, Phys. Rev. ST Accel. Beams 1, 081001 (1998).

Ivan Strašík and O. Boine-Frankenheim • Collimation of Ion Beams • HB2012

Angular and position distribution after scattering

4 GeV protons \rightarrow 1 mm thick tungsten foil (FLUKA simulation)

distribution of the particles downstream the foil

Scattered particles in the phase space

2D optics

Scattering is an isotropic process and occurs in both planes hor. & ver. \rightarrow 2D description is required Optimal geometry for the efficiency of the collimation system \rightarrow circular aperture Circular aperture \rightarrow mechanical problems with movable aperture \rightarrow octagonal approximation

$$n_{P} = \sqrt{X^{2} + Y^{2}} \qquad X' = Y' = 0 \qquad \vec{V} = (X, X', Y, Y') \qquad k_{opt} = k_{X,opt} \cos\phi + k_{Y,opt} \sin\phi$$

[Ref] T. Trenkler and J.B. Jeanneret, Particle Accelerators 50, 287 (1995). [Ref] J.B. Jeanneret, Phys. Rev. ST Accel. Beams 1, 081001 (1998).

Ivan Strašík and O. Boine-Frankenheim • Collimation of Ion Beams • HB2012

Collimation fully-stripped ions

- Two-stage collimation system utilize also for fully-stripped ions Study of the following processes for various ion species
- Reference quantity magnetic rigidity
 Injection and extraction energy
- Scattering in the primary collimator Molière theory (multiple Coulomb scattering)
- Inelastic nuclear interactions in the primary collimator Sihver formula
- Energy (momentum) losses in the primary collimator
 Bethe formula
- Collimation efficiency

Dependence on the ion species

Magnetic rigidity

Reference quantity \rightarrow magnetic rigidity

$$B\rho = \frac{p}{q}$$

Magnetic rigidity \rightarrow injection and extraction energy of the beam

GS

Scattering in the primary collimator

Molière theory of multiple Coulomb scattering

$$\theta_{rms} = \frac{13.6}{\beta c \rho} Z \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \ln \left(\frac{x}{X_0} \right) \right]$$

roughly Gaussian for small deflection angles

[Ref] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).

Inelastic nuclear interactions

Cross section for inelastic nuclear interaction

Sihver formula (E > 100 MeV/u) $\sigma_{in} = \pi r_0^2 [A_p^{1/3} + A_t^{1/3} - b_0 (A_p^{-1/3} + A_t^{-1/3})]^2$ $b_0 = 1.581 - 0.876 (A_p^{-1/3} + A_t^{-1/3}) \quad \text{lons}$ $b_0 = 2.247 - 0.915 (A_p^{-1/3} + A_t^{-1/3}) \quad \text{Protons}$

[Ref] L. Sihver et al., Phys. Rev. C47, 1225 (1993).

Other formulae (E > 10 MeV/u)

- Tripathi formula [Ref] R. Tripathi et al., NIMB117, 347 (1996).
- Kox formula [Ref] Kox et al. Phys. Rev. C35, 1678 (1987).
- Shen formula

[Ref] Shen et al. Nucl. Phys. A491, 130 (1989).

Foil material: tungsten

Momentum losses in the primary collimator

Bethe formula

$$-\frac{dE}{dx} = \frac{nZz^2 4\pi\alpha^2\hbar^2}{m_e\beta^2} \left[\ln\left(\frac{2m_ec^2\beta^2}{I(1-\beta^2)}\right) - \beta^2 \right]$$

Scattering foil: tungsten, 1 mm

Ivan Strašík and O. Boine-Frankenheim
• Collimation of Ion Beams • HB2012

Momentum losses in the primary collimator

Collimation system is localized in a straight section with no dipoles.

Normalized dispersion

 $\begin{pmatrix} \chi \\ \chi' \end{pmatrix} = \frac{1}{\sigma_x} \begin{pmatrix} 1 & 0 \\ \beta_x & \alpha_x \end{pmatrix} \begin{pmatrix} D \\ D' \end{pmatrix} \qquad \sigma_x = \sqrt{\beta_x \varepsilon_x}$

Coordinates at the primary collimator

Scattering angle

$$k = \frac{n_{\rm s} - n_{\rm P} \cos\mu_{\rm s}}{\sin\mu_{\rm s}} + \delta \frac{\chi_{\rm P} \cos\mu_{\rm s} - \chi_{\rm s}}{\sin\mu_{\rm s}} + \delta \chi_{\rm P}'$$

Dispersion vector

$$\chi_{\rm S} = \chi_{\rm P} \cos \mu_{\rm S} + \chi'_{\rm P} \sin \mu_{\rm S}$$

[Ref] T. Trenkler and J.B. Jeanneret, Particle Accelerators 50, 287 (1995). [Ref] J.B. Jeanneret, Phys. Rev. ST Accel. Beams 1, 081001 (1998).

Scattering angle for the optimal phase advances

$$k = \frac{n_{\rm S} - n_{\rm P} \cos\mu_{\rm S}}{\sin\mu_{\rm S}} \qquad \qquad k_{opt} = \sqrt{n_{\rm S}^2 - n_{\rm P}^2} = n_{\rm P}\sqrt{2\delta + \delta^2}$$

 k_{opt} does not depend on the momentum losses if the collimation system is localized in a stright section

11

Material of the primary collimator

Material	Graphite	Titanium	Copper	Tungsten
Protons (Bρ = 18 Tm)				
Thickness [mm]	66.5	10.4	4.2	1.0
Scattering angle [mrad]	1.30	1.30	1.30	1.30
Probability of inel. nuclear int.	0.127	0.036	0.027	0.010
Momentum losses dp/p	0.0044	0.0014	0.0011	0.0005
⁴⁰ Ar ions (Βρ = 18 Tm)				
Thickness [mm]	66.5	10.4	4.2	1.0
Scattering angle [mrad]	1.35	1.35	1.35	1.35
Probability of inel. nuclear int.	0.593	0.132	0.091	0.026
Momentum losses dp/p	0.0803	0.0249	0.0193	0.0079

High-Z materials are preferable.

GS

Collimation of partially-stripped ions

Intermediate charge-state ions will be accelerated in SIS 100.

 ${}^{238}_{92}\mathsf{U}^{28+}, \ {}^{197}_{79}\mathsf{Au}^{25+}, \ {}^{181}_{73}\mathsf{Ta}^{24+}, \ {}^{132}_{54}\mathsf{Xe}^{22+}, \ {}^{84}_{36}\mathsf{Kr}^{17+}$

[Ref] FAIR - Baseline Technical Report, GSI Darmstadt, (2006).

Colimation concept

Lost particles during the slow extraction \rightarrow intercepted by two warm quadrupoles

[Ref] A. Smolyakov at al, EPAC2008, 3602 (2008).

The stripping foil for halo collimation is placed in the slow extraction area in SIS 100

Ivan Strašík and O. Boine-Frankenheim • Collimation of Ion Beams • HB2012

Charge state distribution after stripping

Medium-Z materials (AI – Cu) \rightarrow optimal for efficient stripping for wide range of projectiles and beam energies

Conclusion

- Halo collimation of partially- and fully- stripped ions was studied.
- Dependence of the collimation efficiency on the scattering, inelastic nuclear interaction and momentum losses in the primary collimator was investigated.
- Above 20 Tm the scattering angle for protons and ions is almost the same.
- The probability of inelastic nuclear interaction for ⁴⁰Ar ions is less than 3 % in the considered primary collimator.
- Influence of the momentum losses in the primary collimator to the efficiency is also not significant if the collimation system is localized in a straight section.
- The particles with large momentum losses which are not intercepted by the secondary collimators will be likely lost in the following arc section.
- The concept for the partially-stripped ions is based on the stripping of their electrons and consequently their interception by two warm quadrupoles.
- Detailed particle tracking and calculation of the beam loss distribution in the synchrotron using simulation codes is needed.

F

Thank you for your attention