

Acceleration and Transportation of Multiple Ion Species at EBIS-Based Preinjector

Deepak Raparia

Collider-Accelerator Department Brookhaven National Laboratory

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

Contributors:

- J. Alessi, E. Beebe, S. Pikin, A. Kponou, J. Brodowski, M. Mapes, W. Meng,
- J. Ritter, C. Gardner, A. Pendzick, S. Y. Zhang, T. Roser (BNL)
- S. Minaev, A. Schempp, B. Schlitt, U. Ratzinger, R.Tiede C. Zhang (IAP), P.N. Ostroumov (ANL)

- Brookhaven Accelerator Complex
- Overview of the EBIS Pre-injector
- Electron Beam Ion Source (EBIS)
- Why Multiple Ion Species
- Acceleration and Transportation of multiple ion species
- Conclusions

e Many (or all) of these can be running simultaneously at

Two 14 MV Tandem Van de Graaffs

 Increased flexibility to handle the simultaneous needs of RHIC and NASA (fast switching between species ~ 1s)

• Capability to provide ions not presently available, such as noble gas ions (for NASA), uranium (RHIC).

•Simpler technology, robust, more modern

• Elimination of two stripping stages and an 860 m long transport line, leading to improved performance

Principle of EBIS

Radial trapping of ions by the space charge of the electron beam. Axial trapping by applied electrostatic potentials at ends of trap.

- The total charge of ions extracted per pulse is ~ (0.5 0.8) x (# electrons in the trap)
- Ion output per pulse is proportional to the trap length and electron current.
- Ion charge state increases with increasing confinement time.
- Output current pulse is ~ independent of species or charge state!

Electron Beam Ion Source (EBIS)

High charge state heavy ions produced by trapping and stepwise ionizing in an electron beam

BNL: 10 A electron beam; 5T magnet; 1.5 m long trap region

Ion Injection and Extraction from the EBIS

External ion injection provides most ion species.

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

1+ ion injection lines

Hollow Cathode Ion Source based on design used on Saclay EBIS.

Low Energy Vacuum Arc Source (I. Brown);

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

RFQ from IAP, Frankfurt (A. Schempp)

3.2 m

100 MHz

Accelerates the beam from 17 keV/u to 300 keV/u

Fabricated by NTG

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

2.5 m

HB2012 Beijing, China September 17-21, 2012

Linac from IAP, Frankfurt (U. Ratzinger)

100 MHz Accelerates the beam from 300 keV/u to 2 MeV/u

Cavity Fabricated by PINK; Quad by Bruker

s trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

D. Raparia

RFQ. MEBT, and Linac

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

Linac and EBIS-to-Booster transport

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

Buncher C-2 in transport line

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

Beamline in Booster

D. Raparia

September 17-21, 2012

Ion Beam Delivered to NSRL and RHIC

IONS	Q/m	delivered to	
₃ He ²	0.6667	AGS	
^₄ He ²	0.5000	NSRL	
12 C ⁶	0.5000	NSRL	
1 ₆ 0 ⁸	0.5000	NSRL	
_⊿ He ¹	0.2500	NSRL	
20 Ne +5	0.2500	NSRL	
40AR+10	0.2500	NSRL	
₆₃ Cu ¹¹	0.1746	RHIC	4.8e9
40AR+7	0.1750	AGS	
48 TI +9	0.1875	NSRL	
56 Fe ⁺¹⁰	0.1786	NSRL	
₈₄ Kr ⁺²⁰	0.2439	NSRL	
¹³¹ Xe ⁺³⁰	0.2290	NSRL	
181 181 Ta +40	0.2210	NSRL	
197 Au +32	0.1624	RHIC, NSRL	1.6e9
₂₃₈ U ⁺³⁹	0.1638	RHIC	1.3e9

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

Why Multiple Ion Species

- Full ion beam sampled and collected on Faraday Cup
- I_e= 7A;
- 10 ms confinement
- Au = 83%; C&O = 15%; H = 2%

Au time-of-flight charge state distribution; Peak at Au 31+ I(e)=7.6 A; 65ms confinement

Drift space needed for injection in LEBT

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

LEBT Length

Distance needed between two lenses for external ion injection (L) ~ 1 m.
Beam radius (R) ~ 2.0 cm, Lenses (solenoid) aperture radius 5.0 cm
Maximum beam current for SC dominated drift (L), maximum beam radius (R) and initial slop R'₀=-0.92 given by

=20 mA for Au⁺³² = 6 mA for D = 5 mA for $_{3}$ He⁺²

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

D. Raparia

 $\gamma \cap$

Alternative LEBT: Charge Separation before RFQ

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

Matching to the RFQ

NATIONAL LABORATORY

D. Raparia

HB2012 Beijing, China September 17-21, 2012

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

Emittance

Measured emittance of a 1.7 ma Au beam

We have assumed emittance scales as Q/m for different ion Species $\epsilon(n) = 0.16 * r^2 * Bz * (Q/M) m$ -rad (100% of beam)

=> He⁺² emittance will ~3 times of Au⁺³²

Emittance Budget for the EBIS-Injector

 ε (n, rms)= 0.1 π mm mrad.

	Vertical	Horizontal			
	π mm mrad (N, 95%) π mm mrad (N,				
Booster*	4.5	10.0			
Linac	1.4	1.4			
Source	0.7	0.7			

*mismatch injection

Note: Booster acceptance (VXH) 4.5 X 15 π mm mrad (N,95%)

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

The LEBT and MEBT beam lines were each first commissioned with temporary diagnostics, before moving the RFQ, and then the linac, into place.

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

Image of the Beam (U) after linac

Au +30

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

Au 31

Au+32

Au +33

Au⁺³⁴ after RFQ

Au +35

NATIONAL LABORATORY

D. Raparia

Beijing, China September 17-21, 2012

Au +36

NATIONAL LABORATORY

Au⁺³⁶ after RFQ

Au +37

Aut⁺³⁷ after REa

Beijing, China September 17-21, 2012

Au +38

Au⁺³⁸ after RFQ

D. Raparia

NATIONAL LABORATORY

HB2012 Beijing, China September 17-21, 2012

At Linac

He¹⁺ – first beam from EBIS transported to Booster

Middle of the Bend

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

Gold at Middle of Bend: Buncher On/Off

BROOKHAVEN

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

EBIS Beam circulating in the Booster

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

EBIS beams transported to middle of bend (2 MeV/u)

He ⁺¹	Conf. Time	2.5 ms
	RFQ Power	40 kW
	Linac Power	76 kW
	Pulse width	<20 µs
	Intensity	7 x 10 ¹⁰ ions / pulse

Transmission (helium):

RFQ Input FC	1.4 mA (18.5 nC)	
RFQ Output FC	1.4 mA (15.0 nC)	T=100%,(T=81% charge)
XF14 (after linac)	1.1 mA	T=79%
XF 89 (before bend)	1.1 mA	T=100%
XF108 (after <i>both</i> bends)	1.1 mA	T=100%

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

Gold Transmission to booster injection

Charge		EB	IS# (Measu)	RFQ	Linac E	Send I	B INPUT
	26	1.2	0.033622	0	0	0	0
	27	7.5	0.044829	0	0	0	0
	28	20	0.064041	0	0	0	0
	29	45	0.092859	0.000464	0	0	0
	30	80	0.108229	0.060933	0.044206	0.005698116	0
	31	111	0.120077	0.107589	0.106748	0.105307397	0
	32	124	0.128082	0.123727	0.123727	0.123599103	0.123599
	33	111	0.120077	0.096182	0.091499	0.085134486	0
	34	80.5	0.112072	0.07139	0.062872	0	0
	35	49	0.076049	0.028975	0.021598	0	0
	36	25.5	0.048031	0.015754	0.008357	0	0
	37	11.5	0.03202	0.005487	0	0	0
	38	4.5	0.020013	0.003162	0	0	0
			1	0.513662	0.459008	0.123599	0.123599
	Sim (nC)	54.5	27.9945	25.01659	6.7362	6.7362
	Meas	u (nC)	54.5	29.6	16.2	7.4	5.8
	Ratio		1.000	1.05735	0.647	1.10	0.86
# E	Electron o	urrent 7	.5 A D	esign	Ach	ieved	Ratio
			0	.81*.128*5	4.5		5.8/5.7
			=.	5.7 nC	5.8 ו	nC	=1.02

Multiple ion Species seen after Booster

Tuning procedure with Multiple Charge Species (PLAN vs Real)

We have studies the tuning procedure for the linac. Summary as follows: Set all the quad to calculated values and bunchers off

•LEBT

-With TOF maximize beam current for desire charge state (NOT practiced)

-Maximize beam current after RFQ to find the match into RFQ

•RFQ

-Since RFQ will be commissioned about 1.5 years earlier than linac, (NOT done) we will set up analyzing magnet to set the correct amplitude (e. g Au⁺³²)

•IH Linac

Maximizing the beam current for desire Wharge state using Booster to set phase and amplitude of IH Linac

•MEBT

Maximizing current after IH Linac, by tuning quads and buncher (using Booster)
HEBT

-Minimize the energy spread by tuning buncher amplitude and looking beam size with profile monitor at high dispersion at the bend (using Booster)

-Verify bend magnet setting with Booster

16

Conclusions

- EBIS pre-injector provided Au and Cu beam for RHIC Run 12 and tens ions species to NSRL
- Acceleration and transport of multi ion species seen in the EBIS pre-injector and Booster
- EBIS pre-injector is very stable, reliable and reproducible

Diagnostics

CT=current transformer; FC= Faraday cup; FFC=fast Faraday cup; MW=multiwire.

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

- Exit of EBIS: CT (Bergoz), depends on the voltage on nearby electrostatic grid lens
- RFQ Input: FC, diameter 13 mm, can collect +/- 30% delQ/Q
- **RFQ Output: CT**, lot of noise due to RF of RFQ, and pulse quadrupole, NOT USED
- MEBT Output: FC, Not biased, electron suppression due to magnetic field of quad
- Linac Output: CT (XF14), sensitive to EBIS voltage configuration

FFC: due to multiple charge, not much used

• Middle of HEBT: FC47, diameter 30mm, not much used due to its size , beam diameter is much bigger

MW47: Used to determine emittance with multiple charge species

- Before the bend: CT, (XF89)
- Middle of the bend: FC96, 30 mm diameter, sensitive to ion species since biased is limited to few kV, read higher for lower q/m not used in transmission calculation

MW96: very useful, scanning magnetic filed see all the ion species,

scrapers, Very important to stop other charge

- Input of booster: CT (XF108), very important to determine injection efficiencies
- Looking for diagnostics to distingious charge states

Optics of the Transport line to the Booster

BROOKHAVEN

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

D. Raparia

51

Beam Envelop for Au⁺³¹

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

Transmission of Au ions

Simulation done using TRACK Input included Au³² and $\Delta p/p=\pm 10\%$ (C², N³, O³, Ne³⁻⁴) at EBIS voltage of 104 kV. Current was measured at end of MEBT by Faraday cup

Au⁺³² Trans to Middle of the Bend vs LEBT Solenoid

TRACK, PARMILA, and LORAS codes were used in simulations to transport Au⁺³² ions to the middle of the bend. Current was measured by Faraday cup (FC96) in the middle of the bend.

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

Inflector Aperture

Booster Accpt

atched off center

- Inflector gap is 17 mm and 2.2 meter long (BNL #159, Gardner) => Geometric acceptance 29 π mm mrad, $\alpha_{\rm H}$ =-1.87, $\beta_{\rm H}$ =2.5m Infector acceptance 1.9 π mm mr (N)
- Lattice function at exit of inflector are α_{H} =-1.72, β_{H} =11m, η_{X} =-2.4 m

• Mismatch emittance dilution factor is

$$\frac{\varepsilon_i}{\varepsilon_m} = \frac{\sigma_i^2}{\sigma_m^2} = \frac{1}{2} \left(\beta_m \gamma_i + \beta_i \gamma_m - 2\alpha_i \alpha_m \right) = 7.1$$

NATIONAL LABORATORY

•Linac emittance of 0.7(norm) will result in 5 π mm mrad R=15, 3.31 matched. 2.6 mismatched •Incoherent tune shift 0.08 Matched •Booster acceptance (VXH) 4.5 X 15 π mm mrad (N) Mismatched and off center

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

 $\sqrt{\beta_m}x + \frac{\alpha_m}{\sqrt{\beta_m}}x'$

Last December inflector aperture was increase to 22 mm from 17 mm The transmission was increase about 85% from 70% percent

=> Emittance (rms ,N) about 0.55 (π mm mr)

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

Ion/Pulse and Efficiencies for Au+32

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

End-to-End Simulations (LEBT, Au⁺³²)

Pikin

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

End-to-end Simulations

BROOKHAVEN NATIONAL LABORATORY

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

End-to-End Simulations

Transmission is defined with	Location	ε (N, RMS)	
respect to the EBIS source	LEBT	E _τ (π mm mr)	0.085
	RFQ	E _x (π mm mr)	0.086
		E _y (π mm mr)	0.092
		E _z (π ns-keV/u)	0.0658
		Transmission	0.987
	MEBT	E _x (π mm mr)	0.096
Fraction of the beam vs./P on the x-axis		E _y (π mm mr)	0.090
I: Fraction-AP/P at Booster	÷	E _z (π ns-keV/u)	1.425
		Transmission	0.982
0.8 -	IH-DTL	E _x (π mm mr)	0.097
D.D. F ^{efferen}		E _γ (π mm mr)	0.096
		E _z (π ns-keV/u)	0.779
ё с 0.4 – в		Transmission	0.966
	HEBT	E _x (π mm mr)	0.146
0.2		E _y (π mm mr)	0.122
0.0		T.(∆p/P=0.1%)	0.960
.0000 .0002 .0004 .0006 .0008 .0010 <u>\Delta P/P</u>		T.(∆p/P=0.05%)	0.896
•			

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

- Ion extractor \pm 1%, Ion lens \pm 0.5%, Adapter \pm 1%, Gridded lens \pm 0.2%, Platform \pm 0.5%, Solenoid \pm 0.2%
- Quad Alignment ± 0.1 mm (MEBT, IH-DTL, HEBT)
- Quad Strength ±0.1% (MEBT, IH-DTL, HEBT)
- Phase and Amplitude $\pm 0.5 \text{ deg}, \pm 0.5\%$ (RFQ, IH-DTL, Bunchers)
- Dipole Field Uniformity ±0.1 % (x-y plane)
- Dipole Alignment ±0.1mm
- Harp 0.2 mm

- 20 random seeds were used
- All the errors were uniformly distributed
- Simulation started at EBIS with 1000 micro-particles (TRAK 2D)
- At RFQ r-r' converted to x-x' and y-y' with >10000 microparticles
- Alignment errors were corrected with automated steering scheme

End-to-End Simulations with Errors

Transmission with respect to the EBIS Source

•Transmission for HEBT defines as particles with $\Delta p/p < \pm 0.05\%$

Location	Transmission (%)	ε (RMS, N) π mm mrad	ε (RMS, N) π mm mrad	ε (RMS) π ns-keV/u	MMF (x/y)
LEBT Average <mark>(STD)</mark>	100 (0.00)	0.0927 (<mark>0.001)</mark>	0.0897 (0.003)	0.1390 (0.002)	0.05/0.25 (0.04/0.02)
RFQ Average (STD)	97.6 (0.75)	0.1223 (0.020)	0.1160 (0.009)	0.8500 (0.010)	0.04/0.06 (0.03/0.03)
MEBT Average <mark>(STD)</mark>	96.7 (0.79)	0.1159 <mark>(0.004)</mark>	0.1102 (0.006)	0.8043 (0.079)	0.55/0.46 (0.12/0.12)
IH-DTL Average <mark>(STD)</mark>	92.6 (1.19)	0.1286 (0.008)	0.1380 (0.012)	1.4513 (0.328)	0.38/0.57 (0.09/0.12)
HEBT Average (STD)	86.4 (1.22)	0.1670 (0.008)	0.1480 (0.011)	0.8078 (0.054)	0.03/0.08 (0.04/0.18)

Ion/Pulse and Efficiencies for Au⁺³²

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

Species	He to U
Output (single charge state)	≥1.1 x 10 ¹¹ charges
Intensity (examples)	$\begin{array}{rll} 3.4 \ x \ 10^9 \ Au^{32+} \ / \ pulse & (1.7 \ mA) \\ 5 \ x \ 10^9 \ Fe^{20+} \ / \ pulse & (1.6 \ mA) \\ 6.3 \ x \ 10^{10} \ He^{1+} \ / \ pulse & (2.0 \ mA) \end{array}$
Q/m	\geq 0.16, depending on ion species
Repetition rate	5 Hz
Pulse width	10 - 40 μs
Switching time between species	1 second
Output emittance (Au ³²⁺)	$< 0.18 \pi$ mm mrad,norm,rms
Output energy	17 keV/amu
ΔΡ/Ρ	<0.05 %

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

Current 10 mA

	Z	Α	Q	Q/m	vext	EPS(un)	Perv(gen)	ET	SCT	Ratio	Debye Ler
Р	1	1	1	1.00	16.2	67	0.00296	0.0019	0.1971	104.5375	0.000436
He3	2	3	2	0.67	24.4	67	0.00197	0.0019	0.1314	69.69164	0.000534
D	1	2	1	0.50	32.5	67	0.00148	0.0019	0.0985	52.26873	0.000616
Si	14	28	12	0.43	37.9	67	0.00127	0.0019	0.0845	44.80177	0.000665
Au	79	197	32	0.16	100.0	67	0.00048	0.0019	0.0320	16.9807	0.001081

Measurement for 1.7 mA Au⁺²⁵ (n,rms) =0.125 π mm mrad @ 20keV Calculated(n,rms) =0.125 π mm mrad

Envelope equation

$$R'' + k_0^2 R - \frac{(4\varepsilon_{rms})^2}{R^3} - \frac{K}{R} = 0$$

Gen. Perv. (K)= QI/(2 $\pi \epsilon 0 \text{ m c}^3 \beta^3 \gamma^3$)

Debye Length(λ D) = 2 ϵ^2 rms/K=(1/8)(R/ λ D)²

γ=1.000018 R= 15 mm

β**=0.006017**

Acceleration and Transport of Multi-charge species trough EBIS Preinjector

HB2012 Beijing, China September 17-21, 2012

Energy = 17 keV/u