Acceleration of High-Intensity Protons in the J-PARC Synchrotrons

KEK/JAEA J-PARC M. Yoshii

HB2012 WE01C04 19 September 2012

Introduction

1. J-PARC consists of 181 MeV Linac, 3 GeV Rapid Cycling Synchrotron (RCS) and 50 GeV Main synchrotron Ring (MR).

2. High Intensity Proton Facility:

	RCS	MR
Intensity (ppp)	8.3 x 10 ¹³	$3.4 \ge 10^{14}$
Output Beam Power	1 MW	0.73 MW

- 100 times higher than the intensity of KEK-PS (1976-2007)

Features

- **1. Transition-free lattice**
 - to avoid unwanted beam loss during acceleration.
 - **RCS** : a high $\gamma_t \rightarrow 9.14$
 - MR: an imaginary $\gamma_t \rightarrow j31.6$

Features

1. Transition-free lattice

to avoid unwanted beam loss during acceleration.

- RCS : a high $\gamma_t \rightarrow 9.14$
- MR: an imaginary $\gamma_t \rightarrow j31.6$
- 2. Non AC-line synched timing system

to realize the scheduled extraction for multiple Fermi choppers.

Features

1. Transition-free lattice

to avoid unwanted beam loss during acceleration.

- RCS : a high $\gamma_t \rightarrow 9.14$
- MR: an imaginary $\gamma_t \rightarrow j31.6$
- 2. Non AC-line synched timing system

to realize the scheduled extraction for multiple Fermi choppers.

3. Magnetic alloy loaded cavity with a full digital LLRF to achieve high field gradient system (20kV/m) to realize precise and reproducible fine longitudinal control

Locations of the RCS and MR RF Stations

RF systems are located the place where is the lowest radiation level for hands-on maintenance.

Beam Commissioning

1. RCS beam commissioning started in October 2007 with 10 RF systems. Protons were accelerated successfully up to 3 GeV in 31 October 2007.

2. MR beam commissioning started with 4 RF stations in May 2008. Proton beam acceleration started in December 2008. Protons were successfully accelerated up to 30GeV in 23 December 2008.

3. The RF systems were upgraded every year.

RCS beam commissioning

181MeV - 3GeV Energy 2.5 x 10¹³ ppp Intensity Power 300 kW harmonics / N_b 2/20.938 - 1.67 MHz Frequency # of cavities 11 Peak Vacc 400 kV Cycle 25 Hz

1. RCS rf system: $Q \sim 2$, dualharmonic (h=2, 4) operation.

2. radial feedback: not closed, because it is not necessary.

- stable and reproducible Linac energy and RCS dipole field

- frequency pattern is modified offline.
- 3. phase feedback: closed for high intensity operation

4. Multi-harmonic RF Feed-forward: ON for each of the cavities.

Nuclear Instruments and Methods in Physics Research A 621 (2010) 15–32, "Simulation of longitudinal beam manipulation during multi-turn injection in J-PARC RCS" M. Yamamoto

8

Beam Injection from the Linac

Linac Beam Pulse : 15 mA, 500 μ s dp/p , ± 0.03 %

- Chopping by the RCS RF clock
- Chopped pulses are injected into the RCS RF waiting bucket
 - O minimize beam loss during bunching process
- Momentum offset
- Amplitude control for 2nd harmonic RF
- 2nd harmonic phase sweep

O increase bunching factor $O B_f > 0.4$ required

Longitudinal painting at J-PARC RCS injection

longitudinal painting using 2nd harmonic voltages

Stable acceleration of 300kW beams in RCS

1. non AC-line synched timing system

2. no radial feedback

Ultra low-jitter extraction (jitter full width: 1deg = 1.7nsec)

Beam phase plot during 1-hour 300kW operation (190 shots plotted). Right: magnified (19 - 20ms).

MR beam commissioning

Energy	3 - 30 GeV
Intensity	1.1 x 10 ¹⁴ ppp
Power	210 kW
harmonics / N _b	9 / 8
Frequency	1.67 - 1.72 MHz
# of cavities	7
Peak Vacc	240 kV
Repetition (perio	d) 2.56 s
Accel. time	1.4 s


```
1. MR rf system: Q \sim 25
```

Fundamental and 2nd harmonic systems are separated.

2. radial feedback: not closed, because it is not necessary.

- stable and reproducible RCS energy and MR dipole field

- frequency pattern is modified offline.
- 3. phase feedback: closed.
- 4. Multi-harmonic RF Feed-forward: ON for each of the cavities.

Demonstration of 210kW equivalent operation

MR DCCT Monitor (100 point Average)

Demonstration of 210 kW eq. beam operation

- Extracted beam is 1.14 x10¹⁴ ppp ~ 213 kW at 2.56 s cycle
- Measured beam loss is $410 \sim 520$ W in the 210 kW operation.

2nd harmonic RF effect on MR beam

FIGURE: Mountain view, bunching factor and bunch shape at MR injection
- 2nd harmonic operation at RCS extraction and 2nd harmonic system at MR injection work fine.

Block view of the Multi-harmonic RF Feedforward

- without feedforward

 $V_{\rm cav}(h, t) = H_{\rm dr}^{\rm cav}(h, t) \cdot V_{\rm dr}(h, t) + Z_{\rm cav}'(h, t) \cdot I_{\rm beam}(h, t)$

The commissioning of the feedforward system is performed for each of the cavities. In the figure, #N is the cavity number.

Block view of the Multi-harmonic RF Feedforward

The commissioning of the feedforward system is performed for each of the cavities. In the figure, #N is the cavity number.

Comparisons of voltage monitor waveforms: in the cases of no beam, w/o and w/ feedforward

The beam intensity is 300 kW equivalent—(left) middle of acceleration period and (right) just before extraction. The distortion of the voltage waveform is reduced.

Beam loading compensation by multi-harmonic RF feedforward

Impedance at RCS extraction is reduced from 788Ω to 10Ω .

Beam loading compensation in MR

Summary

• Transition-free lattice and non AC-line synched timing system allow to realize clean and high quality beam operation, which also owes to the stabilities of the Linac energy and Bending field of both synchrotrons.

- By using the MA loaded RF systems,
- ✓ more than 20 kV/m of high field gradient
- \checkmark Dual harmonic operation in the RCS

✓ No radial tuning loop and the full digital LLRF offer simple, precise and reproducible longitudinal beam control.

 \checkmark Time-jitter of extracted beam from the RCS is only 1.7 ns. Scheduled extraction is possible to the Fermi chopper at the MLF facility.

• Multi-harmonic RF feedforward system has been developed to compensate a heavy beam loading.

 \checkmark The systems are used for the routine operations at RCS and MR and reproducible and offer an excellent suppression of impedance seen by the beam.