Beam Dynamics for CSNS Linac

Jun Peng September. 18, 2012

Outline

- Beam loss study
- MEBT optimization
- DTL optimization
 - Geometry
 - Accelerating field and synchronous phase
 - Focusing scheme
- End to end simulation

Introduction

Beam loss study

PARMILA with 2D space charge routine

•.The initial distribution at the exit of RFQ is from PARMTEQM

•The beam current is 15mA(1st phase) 30mA (2nd phase)

Error Analysis

For the quadrupoles:
➤ Transverse displacements ≤ ± 0.1mm,
> Rotations ≤ 3mrad,
> Integrated field ≤ 1 %,

For the accelerating field: ≻RF amplitude ≤ 1 % ≻RF phase ≤ 1degree

Beam loss rate-1st phase, I=15mA Beam loss rate-2nd phase, I=30mA

	Tank1	Tank2	Tank3	Tank4
Beam loss <1W/m	89%	100%	100%	100%
Probability				

	Tank1	Tank2	Tank3	Tank4
Beam loss <1W/m	39%	100%	100%	100%
Probability				

	Tank1	Tank2	Tank3	Tank4
	FD	FD	FD	FD
Old design:	Rb=0.6cm	Rb=1.3cm	Rb=1.3cm	Rb=1.3cm
	FFDD	FFDD	FFDD	FFDD
New design:	Rb=0.8cm	Rb=1.0cm	Rb=1.0cm	Rb=1.2cm

DTL in (from MEBT)

DTL in (K-V)

MEBT optimization

MEBT layout

Old design: the MEBT comprises of a chopper, two 324MHzbuncher cavities and eight quadrupole magnets

New design: the MEBT comprises of two 324MHzbuncher cavities and ten quadrupole magnets

The rms emittance growth in x (dot), y (square) and z (triangle) direction versus the element obtained by code PARMILA

DTL optimization

DTL cell geometry-old design

Beta	Bore Radius (cm)	Face angle (degree)	Inner nose Radius (cm)	Outer nose Radius (cm)	Corner Radius (cm)	Diamter of drift tube(cm)	Cavity Diameter (cm)	Flat length (cm)	
0.08-0.1		0	0.2	0.2	0.6	\bigcirc	56	0	Tank1
0.1-0.13	(0.6)	9				(14.8)		0.2	
0.13-0.16		14	0.3	0.6				0.4	
0.16-0.2		20		0.8				0.5	
0.2-0.22		30		1					
0.22-0.25	1.3	35							
0.25-0.29		50							Tank2
0.29-0.32							-		
0.32-0.39		50				14			Tank3~
		60							4

DTL cell geometry-new design

Beta	Bore radius (cm)	Face angle (degree)	Inner nose radius (cm)	Outer nose radius (cm)	Corner radius (cm)	Diameter of Drift tube(cm)	Cavity diameter (cm)	Flat length (cm)	Tank
0.08-0.1		0	0.2	0.2				0	Tank1
0.1-0.13	\frown	8	0.2	0.2				0	
0.13-0.16	(0.8)	15		0.6				0.2	
0.16-0.2		20		0.8				0.4	
0.2-0.21		30			56				
0.21-0.25		35	03		0.0				Tank2
0.25-0.29	1.0	1.0 40	0.0	10				0.5	
0.29-0.34		50		1.0					Tank3
0.34-0.4	1.2	60							Tank4

Accelerating field

Old design

- In the 1st tank, the E₀ is ramped from
 2.2MV/m to 3.1MV/m over the first 24 cells, and then keeps constant.
- No field ramp in other tanks.

4 3 E0(MV/m) Tank1 2 Tank2 1 Tank3 × Tank4 0 80 120 40 160 0 NCell

New design

- To simplify RF tuning and obtain high accelerating gradient, constant field E₀ of 2.86MV/m is chosen over the 1st tank.
- No field ramp in other tanks

Synchronous phase

Multi partIcle simulation shows that, at the exit of MEBT, the beam RMS phase width is 5.58degree, the total phase width is 30.98degree

Old design

Tank number	1	2	3	4	total
Output energy (MeV)	21.76	41.65	61.28	80.77	80.77
Length (m)	7.99	8.34	8.5	8.85	34.45
Number of cell	61	36	29	26	152
Total RF power (MW) I=30mA	1.97	2.01	1.98	2.03	7.99

New design

Tank number	1	2	3	4	total
Output energy (MeV)	21.67	41.41	61.07	80.1	80.1
Length (m)	8.51	8.56	8.78	8.8	35.44
Number of cell	64	37	30	26	157
Total RF power (MW) I=30mA	1.91	1.92	1.92	1.93	7.68

Beam stability requirements

- σ_{t0}, σ_{z0}<90°
- $\sigma_{0t} \neq n\sigma_{0l}/2$,for n=1, 3...
- Equipartitioning require:

$$\frac{k_{t0}}{k_{z0}} = \sqrt{\frac{3}{2} \frac{\varepsilon_{nz}}{\varepsilon_{nt}}} - \frac{1}{2}$$

Zero-Current Phase Advance per Period for FD lattice

Zero-Current Phase Advance per Period for FFDD lattice⁹⁹ ¹⁹

Focusing scheme FD VS FFDD

Disadvantage: high quadrupole gradient, small beam bore radius

Advantage: lower quadrupole gradient, bigger beam bore radius

Error Analysis

For the quadrupoles:
➤Transverse displacements ≤ ± 0.1mm,
➤Rotations ≤ 3mrad,
➤Integrated field ≤ 1 %,

FD Lattice

For the accelerating field: $\nabla P \Gamma$ are alitude $< 10^{\circ}$

- >RF amplitude \leq 1 %
- >RF phase ≤ 1degree

FFDD Lattice

Disadvantage: In DTL-1, 89% probability beam loss <1W/m.

Advantage: In DTL-1, 98.1% probability beam loss <1W/m. In DTL-3, 99.5% probability beam loss<1W/m

End to end simulation

End to End Simulation

The simulation is performed from the RFQ exit to the RCS injection:

- Simulation code: PARMILA with 2D space-charge routine
- Number of particles: 50448
- Peak current: 15mA
- Initial distribution: PARMTEQM output

MEBT match

LRBT match

End to End Simulation (Phase I)

Beam envelope

Beam bore radius/rms beam size

RMS emittance along Linac

RMS emittance growth along Linac

Summary

- In the old design, the beam loss in the 1st DTL tank was found serious while all errors applied. The reason to this problem was that we don't consider halo formation and emittance growth in the MEBT while optimizating DTL geometric parameters. So end-to-end simulation must be conducted before reaching a final design.
- Two transverse focusing lattices have been compared, namely FD and FFDD focusing lattice. FFDD lattice was finally chosen for its lower quadrupole gradient and smaller beam loss rate compared with FD one.
- End to end simulation has shown that the beam loss, emittance growth rate and the ratio of bore radius to rms beam size were acceptable along the linac, and now we reached a final design.

Thank you!