Intense High Charge State Heavy Ion Beam Production for the Advanced Accelerators

Institute of Modern Physics, CAS, Lanzhou 730000, China

Outline

- Introduction
- Physics of HCI
- Introduction to the State-of-the art HCI sources
 - ECRIS
 - EBIS
 - LIS
- Next generation HCI sources

Introduction: Global Needs of HCI Sources

RHIC (BNL), USA: <u>EBIS (1.7emA Au³²⁺/10μs)</u>

MP

FAIR (GSI), Germany: ECRIS (1emA U²⁸⁺)

SPIRAL2 (GANIL), France: ECRIS(1emA Ar¹²⁺)

FRIB (MSU), USA: ECRIS (270euA U³³⁺ & U³⁴⁺)

L. Sun, HB2012, Beijing, 17th -21st Sept. 2012, Slide 3

Principle of HCI Production

104

10³

 10^{2}

10¹

100

- Electron impact ionization is the main mechanism to produce ions:
 - v (collision frequency) = $n_e \sigma v_e$
- Electron energy E_e must be enough to remove the outer electron of the atom to produce HCI

- Successive impact ionization $A^{z+} + e^- \rightarrow A^{(z+1)+} + 2e^-$
- For mono-charge state and very low charge sate, single impact ionization may dominate
- For HCl ion production, especially HCl of heavy elements, successive impact ionization dominates

Principle of HCI Production

• $T_e^{opt} \approx 3^{\sim} 5 W_i$

Golovanivsky's diagram of the (n_eτ_i)T_e criteria
 ξn_eτ_i≥ 3~5×10⁴ (T_e^{opt})^{3/2}, ξ is the total number of electrons in the outer shell

High Charge State Ion Sources

- EBIS or Electron Beam Ion Source
 - Invented by Dr. Donets in <u>1965</u>
 - Control precisely and independently n_e , T_e and τ_i
- LIS or Laser Ion Source
 - Proposed by Dr. Bykovskii et al. and Peacock, Pease in <u>1969</u>
 - Least control of the three key factors
- ECRIS or Electron Cyclotron Resonance Ion Source
 - proposed by Prof. Geller in <u>late 1960s</u>
 - Reasonable control of the $n_e^{},\,T_e^{}$ and $\tau_i^{}$ factors but not independently, and they are coupled

EBIS Principles

Radial trapping of ions by the space charge of the electron beam. Axial trapping by applied electrostatic potentials at ends of trap.

 $\rm C^{\scriptscriptstyle +}$ = 3.36 \times 10^{11} $\rm I_e \rm LE_e$

- The total charge of ions extracted per pulse is ~ (0.5 0.8) x (# electrons in the trap)
- Ion output per pulse is proportional to the trap length and electron current.
- Ion charge state increases with increasing confinement time.
- Output current pulse is ~ independent of species or charge state!

Pros and Cons

- Pros:
 - Easily produces high intensity short pulse HCI beams
 - Very high charge state ions (from EBITs):
 - » SuperEBIT (LLNL)→~100 U⁹⁰⁺ ions/s
 - » Tokyo EBIT→ Bi⁸¹⁺
 - Narrow charge state distribution, peaked on interested charge state
 - Produces beams of any species and intensity is independent of species
 - Pulse width can be precisely controlled
 - Fast beam species switching (~1 second)
- Cons:
 - Possibility of instability issues at high electron beam currents
 - High energy spread of fast-extracted ions
 - High technical challenges : ultrahigh vacuum, very well collimated superconducting solenoid field ...

BNL EBIS for RHIC

	Design Parameters		RHIC EBIS
	Max. electron current	I _{el} =	10 A (up to 12A
	Electron energy	E _{el} =	20 keV
	Electron density in trap	j _{el} =	575 A/cm ²
	Length of ion trap	I _{trap} =	1.5 m
	lon trap capacity	Q _{el} =	1.1x10 ¹²
	Ion yield (charges)	Q _{ion} =	8.1x10 ¹¹ (9.6 A)
Courtesy of E.Beebe, BNL	Yield of ions Au ³²⁺	N _{Au} ³²⁺ =	3.4x10 ⁹

Superconducting solenoid specs	
Maximum magnet field	5.0 T
"Warm" ID	204 mm
Length of solenoid	1900 mm
He refilling period	30 days

RHIC EBIS Performance

Beam intensity measured at Booster ring input:

EBIS I _e (A)	lon	Booster Input (ions)	EBIS All Ch States (Charges)	Charge Fraction EBIS to Booster
8.3	⁶³ Cu ¹¹⁺	6.1 ×10 ⁹	6.9×10 ⁹	9.7%
9.5	¹⁹⁷ Au ³²⁺	1.5 ×10 ⁹	9.4 ×10 ⁹	5.0%
9.6	238U39+	1.1 ×10 ⁹	8.1 ×10 ⁹	5.2%

Transmission to Booster input is ~56% of what is expected, and there are additional shortfalls in the Booster/AGS rings. We believe that the early losses are due to a broadening of the EBIS charge state distribution with high neutralization coupled with a 30% decrease in the RFQ/Linac transmission efficiency due to mismatch and/or emittance growth due to misalignment.

LIS Definition

Ion source for selective ionization of isotopes -Multi-photon ionization of atoms

Ion source using extremely high power density (> 10^{18} W/cm²) of fs-lasers

-Irradiation of thin foil

-Ionization by extremely strong electric field caused by separation of hot electrons and cold ions in space

Ion source using moderate laser power densities (< 10¹⁵W/cm²) -Irradiation of thick target -Ionization by electron impact into laser produced plasma

LIS Principles

Pros and Cons

- Pros:
 - Simple system setup
 - Very high beam current of HCI
 - Short pulses \rightarrow LIS + RFQ is the best combination
- Cons:
 - Low reliability and stability
 - Short continuous operation time (very picky on target surface conditions)
 - Pulse to pulse beam current fluctuations
 - Target erosion, coating of optics by evaporated target material
 - Beam species limited to solid target (cryogenic target is costly)
 - Large beam emittance and energy spread

CERN/ITEP LHC LIS (1993-2003)

• Statistical fluctuations in pulse amplitude and pulse width from shot to shot were less than \pm 15%. 1 Hz pulse trains lasting more than 60-70 minutes.

• $1-2 \times 10^{10}$ Pb $^{27+}$ in a pulse of 3-4 μ s.

CERN LIS:

 $\begin{array}{l} \text{CO}_2 \text{ laser} \\ \lambda = 10.6 \ \mu\text{m}, \ 100 \ \text{J}, \ 1 \ \text{Hz} \\ \text{Laser pulse} \ 15\text{--}30 \ \text{ns} \\ \text{Power density} \ 10^{13} \ \text{W/cm}^2 \\ \text{Ion pulse} \ 1\text{--}10 \ \mu\text{s} \end{array}$

L. Sun, HB2012, Beijing, 17th -21st Sept. 2012, Slide 14

CERN Laser Ion Source - 2003

BNL LIS Performances

Traditional Injection Scheme for RFQ

Main Components:

•Laser

- Target illumination unit
- •Plasma expansion region
- •Extraction system

•LEBT

Disadvantages

- Strong space charge effect : Due to the low energy and highly charged states.
- Matching to the RFQ : Time variation of the beam emittance from the pulsed source.
- Multiple charged states : Effects from un-wanted charged state particles.

Direct Plasma Injection Scheme (DPIS)

Next Generation LIS?

- Plasma cutoff density: $n_{cr} \propto f^2$
- Empirically: J ~d²_f*P ~ E_l
 E₁ of 10 -200 J
- $T_e \& Q \propto P [W/cm^2]$
- Special techniques
 - DPIS or LEBT injection to RFQ?
 - Plasma transverse confinement
 - Beam pulse length expansion without density decrease
 - $P=10^{10}-10^{12} W/cm^2 \text{ for very intense LCS ion beams}$
 - P=10¹⁴-10¹⁶ W/cm² for intense HCI ion beams
- Issues:
 - Stable operational time
 - Reliability and stability
 - Energy spread

Principles of ECRIS

Family Tree of ECRISs

	All permanent magnet ECRIS Nanogan series ion sources BIE series ion sources LAPECR1, LAPECR2	5 Classical RM ECRIS GTS source AECR-U LECR2, LECR3	Hybrid SC-ECRIS RAMSE, SHIVA A-PHOENIX PKDELIS	5 Fully SC-E SERSE 18 VENUS 28 SECRAL 18	CRIS GHz 8GHz 8~28 GHz
	Kei1, Kei2 SOPHIE Operated 2.45 ~ 14 GHz	RIKEN 18 GHz ECR4, Caprice Operated 10 ~ 18 GHz	Dubna 18 GHz Operated 14 ~ 2	SUSI 18~2 RIKEN SCE 28 GHz Operated	24 GHz ECRIS 28 GHz 18 ~ 28 GHz
-	980 1	985 1995	200)2	t
	SUPERMAFIOS MINIMAFIOS ECREVIS* LBL ECR MSU ECR ORNL ECR OCTOPUS ISIS	CAPRICE (CEA) ECR4 (GANIL) A-ECR (LBL) RIKE PH	EN 18 GHz HOENIX (LPSC) SERSE [*] (LNS/CEA) GTS (CEA)	VENUS* (LBNL) SECRAL* (IMP/CAS) SUSI* (MSU) RIKEN SCECRIS*	???
	G1	Cost~500 k€	G2	Cost: 1-4 M€ G3	Cost ? G4

*Superconducting ECRIS

Why Superconducting?

 $\sum_{i,a}^{\prime} n_i^q q_i = n_e$ (Plasma neutrality)

ECR

From RF dispersion equation at resonance : (

$$(n_e T_e) \approx (\frac{m_e \mathcal{E}_0 \omega_{rf}^2}{e^2}) m_e c^2 \quad [I^q \quad \Omega \quad f$$

Plasma Stability condition :

Semi-empirical rules

$$\beta = \frac{n_{e}k_{b}T_{e}}{(\frac{B^{2}}{2\mu_{0}})} < 1$$

As
$$n_e / B /$$

 $B_{inj} \approx 3 - 4 B_{ecr}$ on axis $B_{ext} \approx 2.2 B_{ecr}$ on axis (T) B_{rad} ~ 2B_{ecr} on plasma chamber wall Last closed Bmod inside chamber is ~2 B_{ecr}

B_{ECR} Brad f_{ECR} Binj 14 GHz 0.5 T 2 T 1 T 28 GHz 1 T 4 T 2 T

Performance of the 3rd Generation ECRISs

Performance of the 3rd Generation ECRISs

Breakthrough of U Beam

VENUS: 6.5kW 28GHz + 1.7kW 18GHz, HV: 22kV

Redesigned	d Re Oven
	1
100	

Uranium ion	Beam current in eµA
28+	295
29+	361
31+	460
32+	453
33+	443
34+	400
35+	311

88 Inch Lab, LBNL, USA

Next Generation ECRISs

Geller's Scaling Laws:

 $I(q) \alpha B_{ecr}^{2} \sim \omega_{rf}^{2}$ $Q_{opt} \sim \log \omega_{rf}^{3}$

450euA U³³⁺ @28GHz

~1.8emA U³³⁺ @56GHz

Typical beam intensity enhancement in the last 10-30 years

lons	Year Intensity By ECRIS	Year Intensity By ECRIS	By factor
O ⁶⁺	1974 15 eμA Supermafios	2011, ~2-3 emA LBL VENUS IMP SECRAL	~37 ys ~200
Xe ³⁰⁺	1997-1998 10-15 eμA RIKEN 18 GHz, LBL AECR-U	2011, ~236 eμA IMP SECRAL	~14 ys >15
Xe ³⁵⁺	1997 1.5 eμA LBL AECR-U	2011 ~64 eµA IMP SECRAL	~14 ys >40
U ³⁴⁺	1997 20 eμA LBL AECR-U	2011 ~400 eμA LBL VENUS	~14 ys >20

Choice of SC-magnet?

Available Magnet Choices?

WP

Comparison

Next Generation ECRIS' Field

	24 GHz	28 GHz	18GHz	56GHz
B _{inj} (T)	3.4	4.0	2.6	8.0
B _{ext} (T)	1.8	2.2	1.4	4.4
B _{min} (T)	0.7	0.8	0.5	1.6
B _{rad} (T)	1.7	2.0	1.3	4.0

Cons of the different options

VENUS	SECRAL	MK-I
 Complicated forces at hexapole ends Bulky magnet body Much higher stored energy Nb₃Sn wire problems 	 Lower radial field Smaller plasma chamber Nn₃Sn wire problems 	 Complexity of the sextupole windings Coil clamping method is very challengeable Stepped cryostat and partial hexagonal warm bore and plasma chamber

Other Challenges

- Effective coupling to the plasma of 10-20 kW/50-60GHz microwave power
- Strong ECR plasma bremsstrahlung radiation problems
 - Heat sink in cryostat
 - HV insulator degradation
- Intense high charge state ion beam (20-40emA) extraction and transmission and beam quality;
- Ion beam quality and stability from the ion source working at 10-20 kW/50-60GHz is unkown
- Intense metallic beam production, especially ion beams of refractory materials

Acknowledgement

Thanks for the fruitful discussion and data!!

E. Bebee BNL/USA
D. Hitz CEA/France
C. Lyneis LBNL/USA
G. Machicoane MSU/USA
M. Okamura BNL/USA
T. Thuillier LPSC/France
D. Xie IMP/China

Thank you for your attentions!!

Backup slides

Performance of the 3rd Generation ECRISs

