BROAD-BAND TRANSVERSE FEEDBACK AGAINST E-CLOUD OR TMCI: PLAN AND STATUS

C. H. Rivetta¹ LARP Ecloud Contributors: J Cesaratto¹, J. D. Fox¹, M. Pivi¹, O. Turgut¹, S. Uemura¹ W. Hofle², K. Li ².

¹Accelerator Research Division, SLAC - USA

²CERN

Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515 and the US LHC Accelerator Research Program (LARP).

September 20, 2012 1

b 4 3 4 5

C. H. Rivetta

September 20, 2012 2

< 回 > < 三 > < 三 >

BROAD-BAND TRANSVERSE FEEDBACK SYSTEM -DOE LARP / CERN

- Motivation: Control electron-cloud (ECI) and Transverse Mode Coupled (TMCI) instabilities in SPS and LHC via broad-bandwidth feedback system.
 - Anticipated instabilities at operating currents
 - Complementary to electron-cloud coatings, grooves, etc.
 - Complementary to TMCI mitigation techniques
 - Intrabunch Instability: Requires bandwidth sufficient to sense the vertical position and apply correction fields to multiple sections of a nanosecond-scale bunch.

• US LHC Accelerator Research Program (LARP) has supported a collaboration between US labs (SLAC, LBNL) and CERN

- Large R & D effort coordinated on:
 - Non-linear Macro-particle simulation codes (LBNL CERN SLAC)
 - Dynamics models/feedback models (SLAC Stanford STAR lab)
 - Machine measurements- SPS MD (CERN SLAC)
 - Hardware technology development (SLAC)

R & D Areas - Plan

R & D lines

• Goal is to have a minimum prototype to fully understand the limitations of feedback techniques to mitigate ECI & TMCI in SPS.

R & D areas

- Study and Development of Hardware Prototypes
- Non-Linear Simulation Codes Real Feedback Models Multibunch behavior
- Development and Identification of Mathematical Reduced Dynamics Models for the bunch - Control Algorithms
- MD Coordination Analysis of MD data Data Correlation between MD data / Multiparticle results

< ロ > < 同 > < 回 > < 回 > < 回 >

Feedback Systems

General Requirements

- Original system unstable- Minimum gain for stability
- Delay in control action Maximum gain limit
- Bunch Dynamics Nonlinear tunes/growth rates change intrinsically
- Beam Dynamics change with the machine operation
- noise-perturbations rejected or minimized
- Vertical displacement signals has to separated from longitudinal/horizontal signals
- Control up-date time = $T_{revolution}$

Prototype in SPS ring

- Bunch length $\simeq 2.5 3.5$ ns
- \bullet Sampling frequency \simeq 4 G Samples/s

Hardware

Feedback Control Channel - Excitation Prototype

- We are building a proof-of-principle channel for closed loop tests in SPS before the 2013 shutdown, using existing kicker and pick-up.
- 4 GS/sec. digital channel. Flexible reconfigurable processing -

C. H. Rivetta

HB2012 - Beijing - China

Hardware

Kicker

- LNF-INFN,LBL and SLAC Collaboration. Excellent progress 2012
- Goals evaluate 3 possible options
 - Stripline (Arrays? Tapered? Staggered in Frequency?)
 - Overdamped Cavity (transverse mode)
 - Slot and meander line (similar to stochastic coooling kickers)
- Based on requirements from feedback simulations, shunt impedance, overall complexity - select path for fab

Hardware

Excitation System - Main Features

- Synchronize excitation signal with a selected bunch in the machine.
- 3.2 4GS/s programable unit that allows generating arbitrary signals in time (turns) and across the bunch (z-axis).
- Allows driving the bunch with an arbitrary kick signal.
- Able to follow at some level the bunch during acceleration.

- We drove the beam using a composite AM signal. Along the turns we swept the fractional frequency $F_{Frac}(t)$ of the signal 0.175 to 0.188 in 15K turns
 - $M(z,t) = A(z)sin(\theta(t));$ $\theta(t) = 2\pi \int F_{Frac}(t)dt$ $z \in [0T_b), T_b = 5ns.$
- The frac. betatron tune of the machine was $f_{eta}=$ 0.181, the frac. synchrotron tune was $f_S\simeq 0.004$
- The SIGMA and DELTA signals in the receiver for 20K turns are equalized (cables, pick-up) to recover the Charge Distribution (Sigma) and Dipole motion (Delta).
- Power spectrum of Dipole motion is calculated using a window of 2K turns.

(日) (周) (日) (日)

MD - Results

MD Results - Bunch multimode motions

• Frequency of the driving signal is swept f_{DR}/f_{REV} : 0.175 – 0.188

• Spectrum slice 123 (time \simeq 5.8ns) - Delta SIGNAL.

• Delta SIGNAL. Turns 13401-13426

• Spectrum slice 123 - Turns 2653 and 6997. $f_{eta}=0.181$

(日) (同) (三) (三) (三)

ullet Spectrum slice 123 - Turns 9893 and 13694 . $f_\beta=0.181$

э

(日) (同) (三) (三) (三)

• Spectrum slice 123 - Turns 16771 and 18762. $f_{eta}=0.181$

(日) (同) (三) (三) (三)

Macro-Particle Simulation Codes

Realistic feedback channel model (CMAD, HeadTail, WARP)

- Multi-particle simulation codes have been a very useful test-bench for designing MD analysis algorithms and tools.
- Add a model of the feedback channel that includes a realistic representation of the receiver, processing channel, amplifier and kicker hardware.

• Test-bench to check feedback control system design.

C. H. Rivetta

HB2012 - Beijing - China

September 20, 2012 14

Macro - Particle Simulation Codes : Realistic Feedback

Receiver

- Selection to process as input signal the true vertical motion or dipole motion of the bunch.
- The final frequency response of the receiver can include pick-up response, cables, anti-aliasing filters, etc.
- Introduce signal limitations, e.g. ADC
- Add combination of noise and signal perturbations.

Power Stage

- The final frequency response of the power stage can include kicker-power amplifiers frequency response, cables, etc.
- Introduce signal limitations, e.g. DAC, power amplifiers
- Add noise and perturbation signals or excitation signal in case of open loop simulation

Controller - Processor

- Up to now, less effort modeling general processing structures.
- Option of FIR-IIR filters processing individual bunch slices (No coupling throw the filter between adjacent bunch slices Diagonal controllers)
- Requires up-date when there is a better understanding of the system.

C. H. Rivetta

HB2012 - Beijing - China

Macro - Particle Simulation Codes

Feedback Channel

September 20, 2012 16

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Macro - Particle Simulation Codes

Kicker

- Normalized kicker transfer functions (TF) used in the simulations
- Similar to the kicker TF installed in SPS (BW = 180MHz).

C. H. Rivetta

September 20, 2012 17

Macro-Particle Simulation Codes

Simulation Results - HeadTail

 \bullet Electron cloud interaction with a bunch of 1.1×10^{11} protons in the machine.

- Evolution of the bunch centroid motion and the normalized emittance for different electron cloud densities.
- The case of cloud density $= 6 \times 10^{11} e/m^3$ will be used for the studies.

Macro-Particle Simulation Codes

Macro-Particle Simulation Codes - HeadTail

 $\bullet\,$ Electron cloud interaction with a bunch in the machine of 1.1×10^{11} protons.

C. H. Rivetta

Kicker BW = 200 MHz.

Gain						
- 0.035	- 0.104	- 0.277	- 0.589	- 0.693		
- 0.069	0.139	0.52	- 0.659			

Kicker BW = 500 MHz.

- Evolution of the bunch centroid motion and the normalized emittance for different gains *G*.
- The case of cloud density = $6 \times 10^{11} e/m^3$ will be used for the studies.

Macro - Particle Simulation Codes

Macro-Particle Simulation Codes - CMAD

• Electron cloud dens.: $6 \times 10^{11} e/m^3$, initial vertical off-set $y_0 = 0.5 mm$

• The overall gain is set to G=0.5, the maximum kicker signal $\Delta p_{MAX}=4\times 10^{-5}$ eV s/m

September 20, 2012 20

- 同下 - 三下 - 三

Conclusions

Important progress in the different R & D areas of the project during the last year

- Installation in SPS of amplifiers and excitation system. Several MDs driving a single bunch in the machine
- Expansion of multi-particle simulation codes with models of the feedback system. Realistic models including frequency response, limits, noise and spurious signal.
- Development of the hardware to test a simple feedback channel controlling a single bunch in SPS (' proof of principle prototype ')
- Analysis of wideband Kicker options for the feedback channel.
- Getting ready to test the 'proof of principle prototype' before the LS1.

(日) (周) (日) (日)

Future Plans

- Conduct MDs in SPS during Oct 2012 Test hardware
- Install 'proof of principle prototype' in SPS during Nov 2012 Test simple feedback channel
- Propose kicker structure End 2012
- Evaluate purchase of new amplifiers during LS1
- Design vacuum devices and install in SPS during LS1
- Develop control algorithms and diagnostic firmware During LS1
- Be ready to test feedback system mitigating ECI TMCI Start after LS1

・ 同 ト ・ ヨ ト ・ ヨ ト

	MD Results	Macro-Particle Simulation Codes	Conclusions

Thanks to the audience for your attention!!!,Questions?

C. H. Rivetta

HB2012 - Beijing - China

September 20, 2012 23

臣

(日) (部) (目) (日)