Technical Challenges in Multi-MW Proton Linacs

Valeri Lebedev Fermilab

<u>Contents</u>

- Introduction
- Challenges in the linac NC part
- Challenges in the linac SC part
- Optics limitations
- Beam loss and IB stripping
- Discussion

HB 2012 IHEP, Beijing, China Sep. 17-21, 2012

Introduction

- Applications of MW proton linacs
 - Spallation Neutron sources
 - SNS (Oakridge, USA): 1 MW, 0.9 GeV, 38 mA with 58%DF, 0.85 ms@60 Hz
 - ESS (Lund, Sweden): <u>5 MW</u>, 2.5 GeV, 50 mA, 2.86 ms @ 14 Hz
 - CSNS (China): 0.1 MW, 81 MeV H⁻ DTL + 1.6 GeV RCS
 - ADS Accelerator driven systems
 - MYRRA (Belgium): <u>2.4 MW</u>, 0.6 GeV, 4 mA, CW
 - Indian ADS: <u>30 MW</u>, 1 GeV, 30 mA
 - China ADS: P>>1 MW, 1.5 GeV SC linac to support operation of <u>1 GW reactor</u>
 - Physics intensity frontier
 - SPL (CERN): <u>4 MW</u>, 5 GeV, 40 mA, 0.4 ms with 100%DF, 0.4 ms@50 Hz
 - Project X (Fermilab, USA) <u>3 MW</u>, 3 GeV, 1 mA^{*}, CW + 8 GeV pulsed linac
 * Bunch population corresponds to 10 mA @ 325 MHz
 - Main Injector(Fermilab) 120 GeV, 320 kW ->700 kW (2013) ->2 MW (Pr.X)
 - JPARK (KEK, Japan), 3 GeV RCS + 50 GeV synchrotron
 - PSI cyclotron (PSI, Switzerland): 1.2 MW, 0.59 GeV, 2 mA
 - Nuclear Physics
 - FRIB 0.4 MW, >0.2 GeV/u , 0.65 mA el. current of multi-charged ions

Introduction (continue)

Recent SRF technology development

- High beta cavities (elliptic)
 - CEBAF (1996) : Recirculating electron linac, 1 MW, 1 GeV

- SNS (2007): Pulsed proton linac
 - 13 MV/m
- ILC
 - pulsed: >30 MeV/m (breakdown limited)
 - CW: > 17 MeV/m (cryo-limited)
- Low beta cavities (quarter-wave, halfwave, spoke cavities)
 - Development was happening in parallel with elliptic cavities
 - ♦ ATLAS in ANL (1978)

Introduction (continue)

- Machine types
 - Cyclotrons: ~1 MW
 - Synchrotrons
 - high energy: 0.3 MW -> ~2 MW
 - Iow energy RCS: 0.3 kW -> 1 MW ?
 - Linacs
 - 1 MW -> 10-20 MW? (CW, 1-2 GeV)
 - No obvious insurmountable engineering limitations which are presently feasible
- SC linacs look as the most promising technology for multi-MW proton accelerators
 - Only SC linacs can deliver multi-MW power efficiently for CW moderate energy machines (1 - 10 GeV)

SC linac based accelerators are the main focus of this presentation

Introduction (continue)

Typical SC Proton Linac Layout

- Length of warm linac is decreasing with development of SC technology
 - ◆ SNS: DTL to 87 MeV, CCL to 186 MeV
 - SC part starts with elliptic cavities The only technology "trustable" in ~2004
 - ESS: DTL accelerates to 50 MeV
 - SC part starts with triple spoke
 - Project X linac
 H- Source 3 GeV, 1.0 mA CW Linac
 - SC part starts after RFQ
- Project X linac has largest number of different cavity types
 - Most diverse machine compared to other proposed project

Project X Staging

18 Number of ions per bunch, (e7) **Project X Chopping and Splitting** 16 Bunch sequence for each experiment is 12 controlled by bunch-by-bunch chopper 10 Undesired bunches are removed from uniform RFQ bunch stream for each experiment independently **RF** separation is simular to CEBAF 0.0 0.7 0.1 0.3 0.4 0.5 0.6 0.9 1.0 1.1 1.2 Time, us Separation scheme 162 MHz bunches to be removed Transverse rf splitter **Booster RF** Ring injection: bunches coming to the RF bucket boundary are prevented from injection to the ring

Ion Source

- Machine performance is usually not limited by ion source current or its phase density
 - Even in the case of H- ion source
- Beam brightness: Ibeam/Enorm,rms
 - H^- ~100 mA/mm mrad
 - TRIUMF: DC, 10 mA, 0.12 mm mrad
 - SNS: Pulsed: 0.9 ms, 50 Hz 38 mA, 0.3 mm mrad
 - Protons ~400 mA/mm mrad
 - ESS: Pulsed: 2.9 ms, 14 Hz 90 mA, 0.2 mm mrad

<u>Volume-cusp H⁻ ion source</u> <u>developed by TRIUMF</u> Beam current - CW to 15mA ε_{norm, rms} < 0.25 mm-mrad

http://www.dehnel.com/

I Ion source lifetime is an issue - 350 hours at 15 mA for TRIUMF IS

 Operation with 2 ion sources: operating source and hot spare

<u> Low Energy Beam Transport – LEBT</u>

Assignments

- Beam transport from ion source to RFQ
- Match the ion source phase space to RFQ
- Differential pumping to reduce gas flux from ion source to RFQ
- Length ranges from 20 cm (SNS) to about 2 m (Project X and ESS)
 - Larger length more effective differential pumping
 - + Space for LEBT beam chopper for beam current control
- Beam energy ranges from 30 to 80 kV.
 - Perveance for most machines ~ 60-120 μ A/kV^{3/2}
- Two lenses to have enough freedom for beam envelope matching
 - Electrostatic einzel lenses (like in SNS, work on magnetic LEBT)
 - Axially-symmetric magnetic lenses (ESS, Project X)
 - Quads do not make " compact" focusing and normally are not used
- The beam space charge introduces non-linear focusing which results in an emittance growth Z_0I_LL
 - Effect is scaled with dimensionless parameter:
 - For a two-lens transport and $\kappa_{SC} \approx 100$ the space charge increases the beam emittance by $\approx 30\%$.

 $\kappa_{SC} = \frac{Z_0 I_b L}{4\pi U \varepsilon_a}$

LEBT Simulations for Project X

- Optics with 3 solenoids
 - Partially compensated beam transport for LEBT beam chopping
- Solenoid strength depends on beam current

30 keV, 0.11 mm mrad

Radio Frequency Quadrupole Accelerator – RFQ

- Frequency is usually set by frequency of downstream accelerators
- For most projects it is 352.2 or 325 MHz
 - Good frequencies for further acceleration.
 - 352.2 is bound to the LEP RF frequency
 - \Rightarrow existing CERN infrastructure
 - 325 MHz is bound to the 4^{th} subharmonic of ILC frequency \Rightarrow use of ILC cavity design for acceleration at high energy
- Blistering and sputtering result in a degradation of RFQ parameters in a long run the beam loss
 - Effect grows proportionally to the beam current loss.
 - Design of a high power RFQ has to be aimed to minimize the beam loss to the RFQ vanes.
 - It is more important for low energy particles which produce more spattering and blistering than high energy particles.

Project X RFQ

- Frequency choice of 162.5 MHz is caused by a requirement of bunch-bybunch chopping
 - It looks feasible at 162.5 MHz but hardly possible at 325 MHz
 - Higher frequency RFQ has shorter length (due to faster bunching) and larger power density but other parameters are not much different.

Comparison of Project X RFQs operating at different frequencies, J. Staples

	Type 1	Type 2				
Frequency	162.5	325	MHz			
Injection Energy	35	30	keV			
Output energy	2.5		MeV			
Beam current	10		mA			
Length	385	287				
Vane-to-vane voltage	98.8	64.2	kV			
Peak E-field	20.7	27.6	MV/m			
E-field/Kilpatrick	1.52	1.55				
Cavity power	155	149	kW			
Max. wall power density	2.1	5.2	W/cm ²			
Transmission	94	90	%			

Later in the design process the output RFQ energy was reduced to 2.1 MeV to avoid radioactive activation in the RFQ and MEBT.

Project X RFQ

Ion type: H-Beam current: 5 mA (nominal); 1 – 10 mA Transverse emittance (norm, rms): < 0.25 mm-mrad Longitudinal emittance (rms): 0.8 – 1.0 keV-nsec Input energy: 30 keV

> Output energy (kinetic): 2.1 MeV Duty factor: 100% (CW) Frequency: 162.5 MHz Length: ~4.4 m

Last stages of designOperational in 2014-15

<u>Medium Energy Beam Transport - MEBT</u>

- Assignments
 - Match the bunch envelopes from RFQ to downstream accelerator.
 - In addition to 2 \perp planes the longitudinal plane has to be matched
 - ≥2 RF cavities
 - Instrumentation and hardware
 - to characterize the RFQ beam
 - to assist in the envelope matching
 - to scrape the transverse beam halo
- Space charge effects are still strong (relative to LEBT)
 - Higher energy helps
 - bunching makes it worse
 - However some period lengthening is possible
 - quadrupoles can be use
 - Scraping of RFQ longitudinal tails is a problem.
 - If present they can be lost in further acceleration
 - Need to be avoided in a MW scale machine
 - Special attention to the longitudinal tails in RFQ design

 $\kappa_{SC} = \frac{Z_0 I_b L}{4\pi U \varepsilon \kappa}$

Project X MEBT

Due to bunch-by-bunch chopping Project X has long & complex MEBT

Triplet focusing with ~90 deg. phase advance per cell

minimizes beam sizes and creates "smooth" focusing

 \Rightarrow small emittance growth

- Three RF cavities: 162 MHz, 100 kV (amplitude)
- Two kickers to obtain acceptable voltage (power)
 - Kickers are separated by 180 deg in betatron phase
- Incoming H⁻ beam brings large volume of H_2 : 5 mA = 4.4.10⁻⁴ *l* ·torr/s
 - Differential pumping (Ø10 mm)
 - to reduce gas flux from absorber to SC cavities

MEBT Bunch-by-Bunch Kicker

Kicker: 16 mm gap, 500 mm length,
 13 mm aperture restriction (protect.)

- Improved version of Los-Alamos kicker
- Driven differentially by 2 power amplifiers with ±250 V (1 kW)
 Pulse pre-distortion allows forming nearly perfect pulses with commercial amplifier (1 kW, 50 1000 MHz, ~±300 V)

Kicker design is in the final stage

• Test of fully engeneered prototype is expected at the beginning of 2013

<u>MEBT Beam Dump</u>

- 21 kW in $\sigma_x \approx \sigma_y \approx 2$ mm
- High power density in the beam, ~80 kW/cm²
 - 29 mrad grazing angle \Rightarrow 2.2 kW/cm²
 - micro-channel cooling
 - 650 mm available length
 - Spattering and blistering
 - ~0.2 mm/year
 - Molybdenum (TZM) alloy has high endurance to blistering and good relationship between thermal expansion, Young's modules and yield stress
 ~25% beam power is reflected due to multiple
 - scattering, σ_{θ} ~100 mrad

<u>Warm Linac</u>

- Usage of SC acceleration at low energy does not bring significant advantages for pulsed machines
 - pulsed machines normally use normal conducting accelerating sections between RFQ and SC part of the linac
 - SNS warm part consists of

CAVITIES SHOWING

- Drift Tube Linac (DTL) with 87 MeV output energy
- and Coupled-Cavity Linac (CCL) with 186 MeV output energy
- Recent developments in SC cavities reduced the energy where the SC section can start
 - ESS plans to use DTL to accelerate the beam to 50 MeV
 - Project X will be a CW accelerator and its superconducting part starts immediately after MEBT at 2.1 MeV

COUPLING

Project X SRF Linac Technology Map

5 types of SC cavities are required for Stage I

β=0.1 β	=0.22	β =0.4	β =0.61	β =0.9	β=1.0	
		CW			← Pulsed →	
162.5MHz	325	MHz	650 MHz		1.3 GHz	
Section	Freq	Energy (MeV)	Cav/mag/CM	I	Туре	
HWR ($_{G}=0.1$)	162.5	2.1-11	8 /8/1	HW	HWR, solenoid	
SSR1 (_G =0.22)	325	11-38	16/8/ 2	SS]	SSR, solenoid	
SSR2 (_G =0.47)	325	38-177	36/20/4	SS]	SSR, solenoid	
LB 650(_G =0.61)	650	177-467	30 /10/5	5-cell el	5-cell elliptical, doublet	
HB 650(_G =0.9)	650	467-2000	96/12/12	5-cell el	5-cell elliptical, doublet	
ILC-CW(_G =1.0)	1300	2000-3000	72/9/9	9-cell o	9-cell elliptical, quad	
ILC-pulsed(_G =1.0)	1300	3000-8000	224 /28 /28	9-cell o	9-cell elliptical, quad	

HW and SSR1

<u>cryomodules are in</u> <u>the advanced</u>

<u>design stage</u>

- 2 SSR1 cavities are tested good in VT
- Design features
 - Solenoid with active shielding
 - button BPM is bolted to solenoid
 - SSR1 cryo-vessel design suppresses df/dP
 - Mechanical tuner with piezotuner for microphonics control
- Couplers for both cryomodules are designed and their tests should proceed soon

More details see in R. Kephart presentation in WG-C

Technical challenges in multi-MW proton linacs, Valeri Lebedev, HB-2012

20

PXIE – Project X Injector Experiment

Test of most critical Project X technologies

Warm part + 2 SC cryomodules + diagnostic line & beam dump

Accel. gradient of first 3 SC cavities is reduced due to L. overfocusing

- Design intent for operating voltages are: 1.7 MV HW & 2 MV SSR1
- Reliable operation requires RF volt. & phase to be within 1% & ~0.5°

<u>SC Linac Beam Dynamics</u>

- Strong space charge effects in Project X SC linac
- Bunch population corresponds to 10 mA beam current at 325 MHz
 - 80% bunches are chopped out & RFQ at half frequency (162.5 MHz)
 - Nearly the same beam brightness as at the SNS Current 5 mA@162.5 MHz; Energy: 2.1 MeV – 10.8 MeV – 22.1 MeV

SC - CS transition between cryomodules
 Moderate emittance growth - 40% - transverse; 60% - longitudinal

<u>Phase Advance per Cell</u>

- Long. phase is larger than the transverse ones for first 22 periods (middle of of SSR2)
- Phase advancece per meter are reduced adiabatically

- Tune depression stays nearly the same due to reduction of focusing strength with acceleration
- No significant emittance growth after the second cryomodule
 - Due to adiabaticity in longitudinal motion (small phase per cavity)

TraceWin - CEA/DSM/Irfu/SACM

Focusing and beam transport in SC cryomodules

- Defocusing in SC cavities is RF phase dependent
 - That sets minimum focusing strength of the SC solenoids
- Transverse and longitudinal focusing are adjusted to compensate space charge effects.
 - Space charge does not produce harmful effects and does not produce noticeable beam loss
 - However growth of longitudinal emittance is not negligible
- Beam loss estimate in the first two cryomodules: P ≤ 10 W
 - Compare to 50 W due to e.-m. loss (25 W/cryomodule @ 2 K°)

<u>Beam Loss</u>

- Intrabeam striping is the major mechanism of beam loss for H- beam
 - It makes ~0.1-0.2 W/m beam loss in SNS
- High sensitivity of beam loss to the longitudinal optics (cavity phases)
 - RFQ non-Gaussian tails look as major offender
 - In simulations they are well visible beyond 3σ

Figure 5: The normalized BLM signals vs. peak current for different beams and optics: (a) and (b) H^- beam for the design and production SCL optics respectively; (c) and (d) proton beam for the design and production SCL optics respectively.

- Scraping of long tails does not look practical
- One has to pay attention to the RFQ tails at design stage
- For well tuned machine the beam loss for proton beam is much smaller than for H⁻

<u>Conclusions</u>

- SC linacs look as a great technology for the multi-MW proton accelerators
- Recent improvements in surface treatment greatly improved Q values for SC cavities and push operating gradient beyond 20 MV/m
 - At 1.3 GHz the Q-value of 7.5 x 10¹⁰ at 2 K and at a 20 MV/m were achieved (A. Romanenko, A. Grassellino, 2012, Fermilab)
- There are no insurmountable physics or engineering problems to be overcame
 - Making cavities still require extensive R&D
 - Getting experience in the SRF design and development is irreplaceable for any organization making and/or developing SRF cavities
- These SRF developments will affect many fields
 - HEP, Nuclear energy, solid state and nuclear physics, chemistry, biology ...