
EFFECT OF SELF-CONSISTENCY ON PERIODIC RESONANCE CROSSING

G. Franchetti∗, GSI, Darmstadt, Germany

Abstract

In high intensity bunched beams resonance crossing
gives rise to emittance growth and beam loss. Both these
effects build up after many synchrotron oscillations. Up to
now long-term modeling have relied on frozen models ne-
glecting the physics of self-consistency. We address here
this issue and present the state of the art of simulations ap-
plied to the SIS100.

INTRODUCTION

The phenomenon of resonance crossing [1, 2, 3] can
be induced by space charge in bunched beams [4]. The
simulation of the beam evolution when resonance cross-
ing cannot be avoided poses extraordinary challenges for
computer modeling of long-term storage. The computa-
tion of Coulomb forces, usually performed via particle in
cell (PIC) algorithms, unavoidably produces a noise on the
macro-particle dynamics. Studies on the effect of this noise
[5] have shown that a significant emittance growth can arise
from PIC codes.

For short term simulations, where the effects of self-
consistency created by space charge (coherent resonances,
instability of coherent modes, etc.) are very fast, this noise
does not play a role, as it has not time to build up. Differ-
ent is the case for a beam dynamics that drives an emittance
growth after long-term. In particular on the phenomenon of
the space charge induced periodic resonance crossing, the
extraction of particles from the beam happens slowly, and
the small growth rate can significantly be affected by sim-
ulation code spurious effect as the noise induced by PIC
algorithms.

The level of noise in PIC simulations depends on the
number of macro-particles per PIC cell. Statistical fluc-
tuations scale as 1/

√
Nc, with Nc the number of macro-

particles in a cell. Therefore the reduction of these un-
wanted effects is obtained by raising the number of macro-
particles used to model the bunch. Hence, the prize to pay
for controlling the noise is an increased CPU time required
to perform the simulations. Therefore simulations on a
time scale of 105, 106 turns are not feasible with PIC al-
gorithms.

For this reason in the studies performed till now (see for
example Ref. [6]) the Coulomb force has been computed
by assuming a beam distribution frozen. In this approach
a frozen Coulomb force is used for tracking “test” macro-
particles in the accelerator structure. This approach relies
on the assumption that macro-particle loss is small (maxi-
mum of 10%). For beam loss larger than this value, simu-
lation predictions are not reliable.
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Given the substantial approximation made, benchmark-
ing of code predictions with experiments has been per-
formed. The benchmarking had the purpose of verify-
ing/confirming the underlying mechanism, and to verify the
accuracy of code predictions [4, 7].

At practical level the necessity of making beam loss pre-
diction is very important for the SIS100 synchrotron in or-
der to consolidate the effectiveness of resonance compen-
sation schemes [8, 9]. Uncontrolled beam loss is required
to be within a 5% budget in order to mitigate a progressive
vacuum degradation, dangerous for beam lifetime. There-
fore the study of the effect of self-consistency is relevant
for the assessment of effective beam loss, crucial quantity
in the discussion on the nonlinear components in magnets,
residual closed orbit distortion as well as in the resonance
compensation strategy.

LESSONS FROM THE MACHINE
EXPERIMENT EXPERIENCE

Two benchmarking campaigns have been performed till
now: the first in the CERN-PS in 2003, and later at GSI
using the SIS18 in 2008-2010. In both the experiments the
lattice was modeled at the best of the available informa-
tions. In Fig. 1 we report the main experimental results of
the GSI campaigns, and the associated simulation results.
Details and discussion of the experiment and its parame-
ters are reported in Ref. [7]. We note that the smaller beam
survival is found to be of ∼ 20%. The simulations instead
show a minimum beam survival of ∼ 50%. The discrep-
ancy of these two results is not fully understood. While
on one hand it is not clear of whether the machine model-
ing is complete, on the other hand, the effect of the self-
consistency is not included in the simulations as a frozen
model is used. In Ref. [7] it was concluded that the dis-
crepancy might be attributed to the incomplete modeling
of the self-consistency in the computer code.

A GLIMPSE TO THE FUTURE
A relevant application of the frozen model is in the

FAIR project [10]. The SIS100 will certainly be afflicted
by a web of resonances created by superconducting mag-
net nonlinear components, closed orbits misalignment, and
random errors [6]. In Fig. 2a is shown for a possible model
of the SIS100 the resonance web, which is formed by in-
teger, half integer, third and forth order normal and skew
resonances. These resonances are found via tune scans of
the short-term dynamic aperture (1000 turns). Beam sur-
vival for several intensities after one second storage are
shown in Fig. 2b. The maximum intensity corresponds
to 0.625 × 1011 ions/bunch, which creates a large tune-
shift represented schematically in the picture. The space
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Figure 1: Emittance growth and beam survival after 1 sec-
ond storage. In picture a) the experimental results are
shown as function of working points around the third or-
der resonance. In picture b) are shown the corresponding
simulations.

charge tune-spread overlaps with 4 resonances hence sev-
eral macro-particles will cross one or more lattice reso-
nances, therefore periodic resonance crossing is taking over
the particle dynamics. Note that the red curve is really los-
ing almost all the beam. This effect is clearly intensity
dependent as shown by the black curve that has intensity
0.125 × 1011 in which beam survival is much better with
almost no beam loss.

It is clear that when frozen simulations lose 90% of the
beam, this prediction severely suffers from the lack of some
space charge update in the code. Note, however, that for-
mally the problem of beam survival can be faced with re-
gard of its source that in this case is the presence of ma-
chine resonances. Therefore a first approach is to com-
pensate to some extent the resonances in order to see what
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Figure 2: Simulations for SIS100: on the top pictures are
simulated the working diagram (left), and beam survival
for several intensities (right). In the bottom pictures: same
simulations but with the resonances overlapping the tune-
spread compensated.

happen to the beam survival. In Fig. 2c is shown again the
working diagram with now the effect of an “ad hoc” ac-
tivated compensation system, still with correcting element
located in the actual position of those foreseen in SIS100.
The corresponding beam survival is comforting (Fig. 2d)
as the beam loss appears significantly mitigated. However,
it is not clear if the effect of the self-consistency is of rele-
vance or not to this prediction.

THE CLOSE TO THE RESONANCE
COLLAPSE

Let consider now a situation in which the space charge
tune-spread crosses only one resonance. For a beam with
size not too small with respect to the beam pipe, the main
effect of the periodic crossing of one resonance is to pro-
duce a slow particle loss. In a simulation that uses a frozen
space charge model, all particles that cross that resonance
will eventually be lost (after long time). If after the satura-
tion has been reached, in the frozen model, we would up-
date the beam intensity, particles that before did not cross
the resonance would now cross it leading to more beam
loss. This reasoning shows that a self-consistent process
necessarily brings new particles to cross the resonance.

Beam loss stops when particles are not able to reach the
beam pipe, and the diffusion of particles is limited to the
phase space area spanned by the islands of the frozen sys-
tem, which outer location is determined by the space charge
tune-shift. Approximately, beam loss stops when the space
charge tune-spread does not overlap anymore with the res-
onance stop-band under consideration.
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A foreseeable consequence is that the most dangerous
working point is the one closer and “above” the resonance
(i.e. allowing the space charge tune-spread overlapping
with the resonance). In fact, in this condition the distance
from the resonance is very small, hence almost all particles
in a bunch should be lost in “a close to the resonance col-
lapse” in order to stop the avalanche beam loss triggered
by the self-consistency. In the last part of this proceeding
we will study the beam behavior in this regime.

MARKOVIAN UPDATE

We propose here as intermediate step to the treatment
of the self-consistency an approximated approach. We in-
tend to keep as feature of the tracking algorithm to be noise
free, but we also want to incorporate some feature of the
self-consistency. We will use the following ansatz: at each
integration time step we update in our frozen model only
the intensity and leave unchanged the frozen bunch emit-
tances and frozen particle distributions. We call this algo-
rithm Markovian update. This ansatz is certainly approx-
imated as it assumes that particles are lost from everywhere
inside the beam. The name Markovian is used because this
type of update creates a loss of memory. In fact, after the
integration step n, the beam evolves as if it started at step
n = 0 but with the intensity found at the end of step n.

From a simulation point of view, even adopting this pro-
cedure, it arises the issue of how many particles should
be used. In fact, in order to describe a continuous pro-
cess of beam loss the number of macro-particles should be
large enough to allow such a description. The simulations
shown Fig. 2bd relied on splitting the work load among
many processors in which the same simulation is run but
with differently seeded macro-particles. For the simula-
tions in Fig. 2bd, 750 processors were used and each of
them tracked 4 macro-particles for a total of 3000 macro-
particles tracked. Each beam intensity curves in Fig. 2bd is
obtained as averages of all the 750 beam surviving curves
obtained from each single processor simulation. If we ap-
ply the Markovian update to a single processor simula-
tion that tracks only 4 macro-particles we certainly cannot
expect a smooth beam loss process as when one macro-
particle is lost that corresponds to an abrupt change of 25%
of that single processor simulation beam intensity.

Keeping this in mind we explore the response of the
Markovian update for several number of single processor
macro-particle tracked. We considered the single proces-
sor tracking of 4,10,20,100 macro-particles, with a num-
ber of processors consistent with a total tracking of 3000
macro-particles. In Fig. 3 we show the results of this series
of simulations for the case of the maximum intensity of
SIS100 (i.e. 0.625× 1011 ions/bunch). The picture shows
surprisingly that the beam survival curves for the several
cases bundle together almost regardless the number of sin-
gle processor macro-particles used. This result is at the
moment not fully understood, and its explanation is part of
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Figure 3: Beam survival for a Markovian update simula-
tion with single processor number of macro-particles of 4
(yellow), 10 (blue), 20 (green), and 100 (red). The number
of processors used in each case is to obtain a total of 3000
macro-particles tracked. The black curve shows the beam
survival obtained with the frozen space charge.

an ongoing study. Nevertheless, the results of Fig. 3 show
distinctly the effect of the Markovian update. The beam
survival in SIS100 is found ∼ 30 ÷ 40%, which is better
than the previous ∼ 5% obtained with a frozen model. We
omit here a discussion on the underlying physics responsi-
ble of this difference as it arises by a simultaneous crossing
of 4 different resonances (see Fig. 2a), and this analysis
goes beyond the purpose of this proceeding.

MARKOVIAN MAPPING

We now further develop the concept of Markovian up-
date. Suppose we can “fit” the evolution of the beam inten-
sity of a frozen space charge simulation with an intensity I
given by the differential equation

dI

dt
= −Δ(I0)f

(
t

τ(I0)

)
1

τ(I0)
, (1)

where τ(I0) is a time constant of the beam loss process
which depends on the initial beam current I0. Strictly Eq. 1
should be of a second order as the beam tracking with a
space charge frozen algorithm preserve the memory. If,
ideally, we knew the functions Δ(I0), τ(I0), and f(), then
we could construct the Markovian update from the process
in Eq. 1 and find the beam intensity I∗ by substituting I0 →
I∗, and by solving

dI∗

dt
= −Δ(I∗)f

(
t(I∗)
τ(I∗)

)
1

τ(I∗)
. (2)

Here t(I∗) denotes the time at which each update process
takes a frozen evolution of intensity I∗. This is the time
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in which the beam loss becomes “steady”: at the begin-
ning of the evolution of I(t) we find dI/dt < 0, and
later it changes to dI/dt > 0. t(I∗) is found solving
d2I[t(I∗)]/dt2 = 0. In the Markovian update of simula-
tions this happens automatically because when the update
of intensity is made, the beam loss flow is already “satu-
rated”.

We apply these concepts to the simulations in Fig. 2b.
After few attempts we find that the beam survival is de-
cently fit by the function

I =
I0

1 + [t/τ(I0)]1.23
, (3)

where the function τ(I0) = 2.5 I−3.3
0 is shown in

Fig. 4 right. In Fig. 4 left it is shown how the curves over-
lap with the frozen simulations (of Fig. 2b). Differentiating
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Figure 4: Application of the Markovian mapping proce-
dure: on the left the comparison of the fit beam intensity
from Eq. 3 with the simulation results of Fig. 2b. On the
right, comparison of the fit function τ(I0) with the corre-
spondent values obtained from the simulations (red line).

Eq. 3 with respect to t we find Eq. 1, hence Δ(I0), τ(I0),
and f(). We next find t(I∗) solving d2I[t(I∗)]/dt2 = 0
and finally we solve the Markovian mapping equation Eq. 2
and find

I∗ = I0
[
1 + 0.87 I3.30 t

]−1/3.3
.

The comparison of I∗ with the result of Markovian update
simulations is shown in Fig. 5. In the picture the upper
three curves refer to the intensity of 0.25×1011 ions/bunch.
The green curve is the Markovian mapping, and the red the
Markovian update. The Markovian mapping closely fol-
lows the Markovian update. The other three curves with
higher beam loss are relative to the case of full intensity
(0.625 × 1011 ions/bunch). We note that green and red
curves do not perfectly overlap, but still are close. The
black curve at the bottom is the beam survival for the frozen
simulation. This discrepancy is not surprising as it is the
result of a somewhat arbitrary fitting curve Eq. 1. It is
interesting, however, that although the heuristic approach,
the Markovian mapping is not that “wrong” with respect
to the Markovian update. This is interesting because this
procedure allows retrieving Markovian update results from
space charge frozen simulation without actually running

self-consistent simulations. The advantage of this approach
is to avoid the use of increased number of macro-particles
for describing smooth processes of beam loss and using a
fitting procedure associated with an analytic treatment that
allows to retrieve Markovian update results. The procedure
needs a series of frozen space charge simulation that allows
the estimate of Δ(I0), τ(I0), and f() in Eq. 1.
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Figure 5: Comparison of the Markovian update (red
curves) with a Markovian mapping (green curves). In black
are shown the frozen space charge simulation results. The 3
lower curves are for 0.624× 1011 ions/bunch; The 3 upper
curves are for 0.250× 1011 ions/bunch.

ASYMPTOTIC LIMIT

We now use the Markovian mapping to explore the
asymptotic limit of beam survival. In order to obtain clearer
results we do not use here the SIS100 lattice, but we confine
ourself to a constant focusing lattice having one sextupole.
The bunched beam is taken Gaussian in all 3 dimensions,
and we apply the Markovian update algorithm. In Fig. 6
we show the beam survival after a storage of 5× 106 turns.
The black curve shows the result for a frozen space charge
algorithm. The red curve is of the Markovian update. The
resonance excited is centered in Qxr = 4.3333 and the
space charge incoherent tune-shift is ΔQx = 0.15. The
synchrotron tune requires 144 turns for one oscillation. The
beam pipe is located at 4.5σr, and the tracking has used
1000 macro-particles. We observe that the beam loss is di-
vided into 2 regions:

1 Self-consistency dominated region

A region in which the self-consistency created by the
Markovian update makes the beam survival to dif-
fer from that of the frozen space charge simulation.
This region extends in 4.35 � Qx � 4.39. The
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curve of beam survival becomes a straight line be-
cause the beam loss will stop when the space charge
tune-spread becomes equal to the distance from the
resonance which is set by Qx in abscissa. This feature
allows distinguishing inside this region other 2 sub-
region: one is where the beam with a Markovian up-
date survives better than those in the frozen tracking,
and another with the opposite pattern.

2 Frozen dominated region

In Fig. 6 it is also remarkable that for 4.32 � Qx �
4.35 the beam survival of the Markovian update sim-
ulations is equal to those of the frozen space charge
simulation. This feature contradicts the expected
“close to the resonance collapse”, which seems not to
occur. The overlapping of the red with the black curve
in this region suggests that the avalanche process stops
spontaneously. This feature depends directly from the
longitudinal distribution, and this result is valid for a
Gaussian longitudinal distribution.

The straight line on which the frozen simulations con-
verge is obtained by the number of particles popu-
lating the shell in longitudinal phase space, which
crosses the resonance. The amount of these parti-
cles was estimated in Ref. [11] as ΔN/N = (Qx −
Qx,r)/ΔQx. This relation shows that the functional
dependency of the beam survival has to be linear (in
Fig. 6 the green line).
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Figure 6: Beam survival in the limit of large number of
turns (5 × 106 turns). In red the Markovian update curve,
and in black the frozen simulation results.

SUMMARY/OUTLOOK

In this work we introduced the self-consistency in a
Markovian approach (Markovian update). The application

of it to SIS100 suggests that self-consistency might miti-
gate long-term beam loss in SIS100 (here studied for the
case without resonance compensation). Tests on the ap-
plicability of the method for several single processor num-
bers of macro-particles revealed a remarkable robustness,
which is still subject of studies. We also discussed the
Markovian mapping concept as a fast method to estimate
a full Markovian update simulation. The results obtained
for the SIS100 are encouraging and indicate that this tech-
nique might be an interesting tool for making predictions.
By using a Markovian update algorithm we also investi-
gated the very long-term beam survival for a simple case
of a system subject to a single 3rd order resonance. Sur-
prisingly we find that “the close to the resonance collapse”
does not happen and that the beam survival converges to
that of the frozen space charge simulations.

The explanation of this behavior requires further space
not available in this proceeding, in addition further simula-
tions have to be preformed in order to understand the effect
of the change of beam size due to beam loss.

The experimental campaign performed in CERN-PS in
June 2012 in the framework of the LIU program at CERN
[12] and its continuation will provide extremely valuable
data for verifying the study here presented.
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