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Abstract 
   In circular accelerators, the beam quality can be 
strongly affected by the self-induced electromagnetic 
fields excited by the beam in the passage through the 
elements of the accelerator. The beam coupling 
impedance quantifies this interaction and allows 
predicting the stability of the dynamics of high intensity, 
high brilliance beams. The coupling impedance can be 
evaluated with finite element methods or using analytical 
methods, such as Field Matching or Mode Matching. In 
this paper we present an application of the Mode 
Matching technique for an azimuthally uniform structure 
of finite length: a cylindrical cavity loaded with a toroidal 
slab of lossy dielectric, connected with cylindrical beam 
pipes. In order to take into account the finite length of the 
structure, with respect to the infinite length 
approximation, we decompose the fields in the cavity into 
a set of orthonormal modes. We obtain a complete set of 
equations using the magnetic field matching and the non-
uniform convergence of the electric field on the cavity 
boundaries. We present benchmarks done with CST 
Particle Studio simulations and existing analytical 
formulas, pointing out the effect of finite length and non-
relativistic beta. 

INTRODUCTION 
   The problem of calculating the impedance of finite 
length devices, in particular simple cavities, has been 
approached in different ways: it was studied as a field 
matching problem in [1], and,  approximated as a thin 
insert in [2, 3].  
   In this application we want to study rigorously the 
electromagnetic fields by means of the mode matching 
method [4, 5]. 
 

THEORETICAL BACKGROUND 
In this section we will show the expressions for 
electromagnetic field decomposition in a closed volume. 
The derived equations are the basis for the mode 
matching method. 
Given a volume , enclosed in an ideal surface , the 
scattered electromagnetic fields E and H may be 
decomposed by means of the Helmholtz theorem in 
summation of irrotational and solenoidal eigenmodes 
which constitute a complete set. We can write: 
 

 (1a) 

 (1b) 
 
where  and are orthonormal solenoidal eigenvectors 
and  and  irrotational ones. In Table 1 is listed a set 
of eigenvectors and the relative differential equations and 
boundary conditions they have to satisfy (  is the unit 
vector normal to pointing internally the volume) [5].  
 

Table 1: Eigenvector equations 

   

   

   

   

 
Since the eigenvectors are determined by the geometry of 
the structure under study, the problem reduces in finding 
the coefficients . This can be done by 
imposing the continuity of the em-field on the openings in 
the surface . It is understood that in this matching one 
must take into account also the impressed field generated 
by the sources. 
Because of the homogenous boundary condition, which is 
an intrinsic property of the eigenmodes, it is not possible 
to perform tout court the matching of the electric field. 
This difficulty can be surmounted resorting to a procedure 
which will be described in the sequel. 
Let be  the given imposed electric field on the 
surface . Consider the quantity  and resort 
to simple algebra to get the following expression: 
 

 
 
Now into the RHS make use of Maxwell’s equation for   
and the expression (1a), then integrate in the volume . 
Applying the divergence theorem and exploiting the 
orthonormality of the eigenmodes, one may get the 
following expression: 
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where  is the surface on which the electric field is 
impressed. Doing the same for the quantity  
we have: 
 

 

 
From which we get the coefficients : 
 

 
 

 

(2a) 

 
 

 
(2b) 

Analogously we may proceed for the irrotational fields, 
obtaining: 

 
 (3a) 

  
 (3b) 

   The results of the above procedure may appear 
contradictory. We have imposed the use of the 
eigenmodes which satisfy homogeneous boundary 
conditions: one might be tempted to infer that the 
expansion coefficients should vanish. There is, indeed, no 
contradiction: the result on the LHS is obtained 
integrating on the volume  a function definite positive, 
while the result at the RHS is obtained integrating on the 
surface  the “imposed” field . However, such an 
expansion will only behave non-uniformly convergent. 
This behaviour will impose some caution on the 
expansion truncation.  

 

IMPLEMENTATION OF THE METHOD 
   The structure we studied is shown in Figure 1: the 
regions I and II represent the cylindrical left and right 
beam pipes where the reflected fields will propagate 
( , region III is the 
toroidal insert  where radial waves 
can propagate, and region IV is the cavity where 
resonances can be excited ( . 
   The beam  is represented in frequency 
domain as a thin ring of radius  and charge   [1]: 

 (4) 

where  is the propagation constant of the 
beam.  
   In order to handle the problem of determining the 
longitudinal beam coupling impedance, the 
electromagnetic field induced by the beam current will be 
calculated as a superposition of a source and a scattered 
field: 

 
 

 
Figure 1: Model studied with the mode matching method.  
   The source field and the scattered field in all the four 
regions consist in Transverse Magnetic (TM) waves: all 
the components can be derived from the longitudinal 
electric field   . 

Source Fields 
The source field  is calculated as the field 
induced by the source particle travelling at speed , i.e. 
representing a current  , along the axis of the 
perfectly conducting (PEC) beam pipe of radius .  
This field is given by the following formula [1], 

 (5) 

where  is the characteristic impedance of 
vacuum,  the modified Bessel functions of argument 

 and . 

Scattered field 
In region I we have the following expression for the 
longitudinal electric field [4, 5]: 

 (6) 

   In region II we have 

 (7) 

where , with , are the zeros of the Bessel 

function , , 

. 
   In region III:  

Proceedings of HB2012, Beijing, China WEO1A01

Beam Dynamics in High-intensity Circular Machines

ISBN 978-3-95450-118-2

345 C
op

yr
ig

ht
(C

)2
01

2
by

th
e

re
sp

ec
tiv

e
au

th
or

s—
C

C
B

Y
3.

0



 (5) 

where the function  describe the radial waves 
as [4, 5]: 

 

with , , where  refers 
to the  dielectric insert and   and  is 
the characteristic impedance in this region. 
   In region IV we can expand the fields in the complete 
set of orthonormal modes of TM type associated to 
homogeneous boundary condition on ,  and : 

 (6) 

 The longitudinal component of the electric field has the 
following expression: 

(7) 

where .  It can be proved that the 
irrotational modes  do not couple for the structure 
under study. 
To summarize four infinite vectors , ,  and  

 are the unknowns. 

Matching conditions 
   By matching the tangential components of the magnetic 
field on the boundary surfaces , we obtain 3 
functional equations. By means of an ad-hoc projection 
(Ritz-Galerkin method [5]) each functional equation may 
be transformed into an infinite set of linear equations.  
In order to get a fourth equation we should find a tool to 
match the tangential component of the electric field. This 
is not as simple as for the magnetic field since, according 
to the assumed expansion, the tangential component of 
the electric field on the boundary is null 
by definition. Note that in the present  case . As 
previously mentioned,  the expansion given by Eq. (7) 
will not converge uniformly on the boundaries. However, 
this difficulty may be circumvented by resorting to the 
equations (2a) and (2b): 

 (8) 

   An ad-hoc truncation is applied to the infinite set of the 
linear equations and then the four sets of equations are 
solved. 

Once all the vectors are known, the coupling impedance 
can be easily calculated. 

APPLICATIONS 
General tests 

A first series of benchmark was done with already 
developed theories and CST [6] particle simulations. 

 
Figure 2: Comparison of the mode matching method (full 
lines) with the standard thick wall formula (dashed lines) 
for various conductivities and b=5cm, c=30cm, 
L=20cm; . 

  In Figure 2 we show the comparison with the standard 
theory for thick wall [7]: the agreement is good for high 
conductivity, while it starts to be different for low 
conductivity at frequencies above cut-off  
(f is normalized to the cut-off frequency ). In fact, with 
decreasing conductivity the insert surface impedance 
becomes more and more different from the surface 
impedance of the adjacent pipes I and II. This implies that 
the losses due to the scattered wave into the pipes, which 
can propagate only above cut-off, become comparable to 
those produced into the volume IV. As a conclusion, 
when a pipe exhibits a discontinuity in the surface 
impedance this discontinuity will contribute to increase 
the broad band impedance. This effect is not taken into 
account by the standard theory.  
To complete the picture, in Figure 3 we study the 
impedance for different conductivities in comparison with 
Shobuda-Chin-Takata’s model (S.C.T.) for resistive insert 
impedances [2]. The differences between the models are 
the absence of the outer PEC boundary layer and 
longitudinal modes. At the frequency in which the skin 
depth becomes comparable with the transverse dimension 
of the cavity, the two models start to differ: the transverse 
field can “see” the cavity’s boundary and is reflected in 
our model, and radiated in the S.C.T. one. The 
longitudinal modes, in this case, do not play any 
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significant role, due to the high conductivity and the short 
longitudinal dimension.  
 

 
Figure 3: Comparison of Mode matching method with 
S.C.T. one.   
   In Figure 4 we show another comparison for a material 
with low conductivity ( ): the cut-off 
between resonant modes and broadband behaviour is 
clearly visible. The discrepancy above cut-off is thought 
to be intrinsic to the CST solving tool. 

 
   

 
Figure 4: Comparison with CST simulations: b=5cm, 
c=30cm, L=20cm. Material: dr=1, dr=1, =10-2 S/m. 
 

Application to an SPS enamel flange 
   A cross-check was done in order to study the SPS 
flanges impedance. A flange can be seen as a very short 
re-entrance between two beam pipes whose impedance 
cannot be easily studied with CST due to geometrical 
limitations (800 μm gap width with 5 cm beam pipe 
radius) and due to the very low dielectric losses that make 
the Q factor - and then the wake length - very large. 
   Figure 5 shows the comparison between the Mode 
Matching and CST for the first impedance peak at 660 

MHz. The three smaller plots show the convergence 
accuracy for the three fit parameters: quality factor Q, 
shunt impedance Rs, resonance frequency fres. In CST, the 
impedance was scanned in function of the wake length 
and mesh cells to maximum values of 60m and 600k 
meshes before memory saturation, in mode matching in 
function of longitudinal S and radial modes P, to a 
maximum of 15 and 50 modes. The values all agree 
within less than 1%. 

 
Figure 5: Comparison with CST simulations: b=5cm, 
c=9cm, L=800um. Material: dr=9.9, dr=1, =10-2 S/m. 
Peak resonance at 664 MHz with convergence tests of 
quality factor Q, shunt impedance Rs, resonance 
frequency fres in the smaller plots. The horizontal axis 
“Scan units” refers to P/max(P) for Mode Matching and 
Wake length/ max(Wake length) for CST. 

Application to non-ultrarelativistic cases 
   In the following we present some studies on non 
ultrarelativistic beams, for different kinds of filling 
materials. 
   In Figure 6 it is shown the beta dependence of 
longitudinal impedance in case of copper as filling 
material: all curves are below the relativistic case. It is 
worth to notice that the impedance is changing 
considerably from roughly 10MHz.  

 
Figure 6: Resistive wall impedance for different . 
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Impedance decreases accordingly with beam field 
decaying. b=5cm, c=30cm, L=20cm. Material: dr=1, 

dr=1, =5.98 106 S/m 
Since, in this particular problem, it can be shown that  the 
only driving term playing a role in the matching equations 
is H , it is expected that the impedance decreases with  
accordingly to H   as shown in Figure 7. The method was 
benchmarked with a 2D axisymmetric code developed at 
CERN by N.Mounet et al. [8]. 

 
Figure 7: Azimuthal component of the source magnetic 
field H  in function of . For the lowest case ( ) 
the field is half the ultrarelativistic one around 10MHz. 
   Confirmation of this behaviour and of the reliability of 
the code is given in Figure 8, where the case of a 
dispersive material (Ferrite 4A4) is displayed. The 
impedance is not changing significantly below 10 MHz. 

Figure 8: Impedance from a ferrite load varying . 
b=5cm, c=30cm, L=20cm. Material: dr=12, 

dr=1+460/(1+jf/20e6), =10-6 S/m. 
 
   The case of the thin insert has been also analysed in 
function of . In Table 2 the three parameters fres, Q, and 
Rs together with the power loss and the magnetic stored 
energy calculated in the region III with Poynting theorem 
[4, 5] are reported. As expected, the Q value is not 
changing with  (it depends on the material properties) as 

the fres (depends on geometry). What changes is Rs 
depending on the excitation source. Being above 10MHz 
the impedance is decreasing with  accordingly to Rs. 
 

Table 2: Resonance parameters  
in function of  for thin alumina insert. 

 fres [Hz] Rs [Ω] Q Wm [J] Pl [W] 
1 6.65E+08 10.94 36.90 1.27E-08 1.45 

0.8 6.65E+08 9.56 36.90 1.11E-08 1.27 
0.6 6.65E+08 7.26 36.88 8.45E-09 0.97 
0.4 6.64E+08 3.59 36.83 4.18E-09 0.48 
0.2 6.64E+08 0.24 36.51 2.73E-10 0.03 

 

CONCLUSION 
The longitudinal beam coupling impedance of a finite 

length device was successfully derived and benchmarked 
with existing theory and numerical simulations also in the 
non ultrarelativistic case.  

Considering the real finite length of a device is 
important both for high conductivity materials, and for 
low conductivity ones: in the first case the impedance 
above cut-off has to include the contribution of the beam 
pipes; in the second case the resonances depend on the 
length of the device and the losses in the material, this 
could lead to beam coupling instability if these modes are 
not properly damped (lowering the Q factor). 

The study of impedance as a function of relativistic  
showed the reliability of the code in comparison with the 
existing 2D azimuthal code for various cases. For this 
particular geometry, the impedance decreases with  
accordingly to the decay of the driving fields above 
roughly 10MHz.  

 Further extension to the driving (dipolar) and detuning 
(quadrupolar) impedances is under development. 
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