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Profile Data

1D Projections of the Beam Distribution

Say f(x,y) is the transverse

beam distribution. Prototypical Profile Device — The Wire Scanner

The projection, or profile, of f
in the horizontal plane is - scan direction -

f 9= [ f0xy)dy.
-L/2

When measuring the projection
f. 1s sampled at axis locations

X, = Kkh
k e ’
with constant sampling |
intervals h, and N samples. \L '
Thus, the sampled profile is “beam pipe  “ beam

given as the discrete set

od = {6, KXo, BT e drop the subscript x from here out
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Profile Data
Objectives: What Do We Want?

At this point, we only want two Wire Scanner
quantities from the measured data - scan direction -

e Beam Position u \ | /

e Beam Size ¢

This seemed like a reasonable
expectation, however... e ) o

e The data are noisy o 7
e Beam jitter “beam pipe beam
e Missing data points

e Many data sets
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The Problem

Processing many data sets for Simple Parameters

Original Goal: Estimate Twiss
SNS Wire Analysis Application

parameters

g‘w@:av,s le:l:xl =2 ESH ===

islaluX Mlm I Within SNS CCL:
M %3 o nsiProfil DTLﬁDlagV‘Q’fg‘?ED 2?5?} Vm Hn‘M F%t - -

e BE e First compute beam sizes
DT\:D::E ngi : 522\ g o % . . .
] — 5 wire scanners with 3 wires

o o . . — 15 data sets of ~150 samples
B each

‘ e Most effort is manual data
processing

T e s » Looking for bad data sets

e Removing errant data points

* Clipping noise baseline

* Reject bad fits, Etc.

e We just want 10 numbers }

Can computation of the beam position and
size from profile data be automated?
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Beam Properties and Measurement Model

Computing Beam Position pu and Size o

— If we know the sampled profile f, exactly, normalizing by the step length
h the position u and size o are approximated*

N N 1/2 N
ﬂ=12kfk, a—{lz(k—y)sz} . where S :Z f,
S k=1 S k=1 k=1

— However, we do not know the {f, }.

The Measurement Model
— Each measurement m, contains noise from electronics, jitter, etc.
— Model as Gaussian white-noise process W with mean B and variance V**

m, = f, +W,  measurement random process

— We must account for this noise when approximating u and .

* That is, u and o are in units of step length h — not necessarily integers

**The noise can be characterized by a calibration experiment (w/o beam)
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Measurement Random Process

(w-B)?
- - . 1 _
e (Gaussian noise process p.d.f. ISPW =w) = — e V7
\/ T

— Then probability that measurement process M, has value m, is the same as
the probability that noise process W has value m, — f,

(my - —B)°
e 2V 2

1

J2rv

P(M, =m,) =

— Assuming independent events, probability (p.d.f.) of the data set {m,} is

1 L 2
] __E (mk_fk_B)

(272_)N/2VN

P({M k}={mk}) -

This is the p.d.f. of our measurement random process
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Technique #1

Direct Computation with Measurement Data

e Inspecting P({m,}) , the sample set {f, } that maximizes the probability of
obtaining measurement set {m,} is f, = m, — B for all k

— Compute position p and size c directly from measurement data {m, — B}

— However, {m,} is a sampling from a random process, we must characterize
statistical properties of computations involving these samples...

Defining computations* We get
N ~ —
Sa (k)= (k—=k)" f, Mean[S,, (k)] =S, (k)
k=1

: Var[S, (k)] = N, (k)V
S (k)= (k—k)"(m, —B)
k=1 . _
where N, (k)= Z(k—k)”
k=1

*Recall = S,(0)/S,(0)
and o2 = S,(n)/Sy(0)
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Technique #1

Direct Computation with Measurement Data
N ()= (kR

e Approximate u and o with measured

1% 5,(0)/54(0) 00001

o’ = S,(u)!Sy(0) 60000 |

. 5

which are the expected values = 40000

— If W is ergodic these approximations get £ '

better as N — o 200001

e The variances in these values are ;
dominated by N, (0)V and N,(w)V 0

— N, is exponentially increasing as N — o :

— N, is huge for typical measurements 300000 |

250000

e Although the expected values are o 200000}

exactly u and o, the variances = 150000F

become enormous as N — co.

100000 £
— V<o x 107 for ~10% accuracy '

50000 F

Is there any way around this?? 0
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Technique #2

Assuming a Known Profile for £,

e Assume a profile for f(x) which is parameterized by p and ¢
— Apply Bayesian techniques to estimate parameters p and o

— We want to know (A,u,c) given {m, } - Bayes says that
P(Awuvo- [{m}, BvV)OC P({mk}l A u, o, B’V)P(A,/AO')

— Look for A, p, and o that maximize P({m,}|A,uc,B,V)P(A,u,0)
o We know P({m}|A,uc,B,V)

e The prior distribution P(A,u,c) = P(A,o) P(n) can be shown to be uniform
because A and o are related by Ac « Q, the beam charge

e The result is a y-squared maximization of P({m,}|A,uc,B,V)

We can also eliminate the need for noise characterization by including B as a parameter
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Gaussian RMS Fit

Gaussian-Like Profile

e Measurement
— N =80 sample points
Noise floor B ~ 0.00369

— A~max{m}-B=0.180

e Gaussian Fit

— A=0.164
— nu=69.2
— 0=1.99
— B=0.00478

e Computed o
— A=0.0834 o
— u=690 .
~ =433 <"

B = 0.00369 oos|

0.00 L
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=

Measurement

020
015}
£ 010}

005

0.00 L
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0.20

0.151
22 i
= 010t

0.05F

k
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0.00L:
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Gaussian RMS Fit

Profile with Halo

e Measurement
— N =50 sample points

— Noise floor B ~ 0.00387

— A~max{mJ}-B= 0.260

e (Gaussian Fit

— A=0.236

— u=359

- o0=181

— B =0.00874
Computed 030

— A=0.245 0.255

— u=353 0.205-

— o0=214 io.w;—

~ B=0.0038 o}
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Gaussian RMS Fit

Measurement

0.15
Extremely Noisy Profile ﬁ
0.10} :
e Measurement . i _
— N =90 sample points 0.00 it
— Noise floor B ~ 0.00107 10_055
— A~max {m,}-B =0.149 '
- - 0105 20 40 e 80
e (Gaussian Fit .
— A=0.112 015 Measurement and fit
— u=50.3 :
- 5=2.26 o -
— B =0.00181 . 005k ]
8 i
= 0.00—=prrrF
e Computed : ]
70.05 -
—IO.IOr' '
0 20
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http://www.wreckedexotics.com/newphotos/exotics/2murcielago_20080715_100.shtml

Conclusions

e Direct Computation of u and o from Measurements
— Highly sensitive to noise and thus dubious
— Requires calibration measurement (twice as long)

e Gaussian Fits
— Direct RMS data fit is the most probable from Bayesian standpoint
— Work well without halo
— (Good noise rejection
— Seems to prefer core of the beam
— Include noise baseline as parameter to avoid calibration (faster)

e Data Smoothing (not covered)
— Significant loss of original signal

e Data Sampling (not covered) — Spectral power loss oc exp[—c?4/h]
— An h providing > 3 samples per o gives good signal reconstruction
— An h with < 1.5 samples per ¢ gives poor signal reconstruction
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The Crux

e A primary motivation for determining u and o Is halo mitigation

— A primary cause of halo formation is poor matching between
accelerating structures

— We originally wanted p and o to compute Twiss parameters in order to re-
adjustment quadrupole strengths for a good match (automated matching?)

— Gaussian fits are suspect when halo is present

e Gaussian Fitting: You need a good match in order to match
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Open Questions

Without Visual Inspection (That is, Automatically...)

e How do we recognize corrupted data?
— Reject it if we find it?

e How do we recognize halo?
— If we can recognize halo how do we compute u and c?

e |s there a better assumed profile than Gaussian?
— Maxwell-Boltzmann is known to be stationary but no analytic form exists

e More fundamentally — is it possible to automate matching?
— If so, how?
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Thank You !

Any ideas, suggestions, comments welcome!
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Sampling Intervals
Resolving Information Content

Choosing number of samples
per scan (in order to maintain
Information content) |

2F

— Assume Gaussian profile ; _ 5 k— 20

— Fourier transform of Gaussian ~ °f
with std = o Is Gaussian with ~ 4f
std=1/c

— Nyquist says when sampling at
interval of h the highest
frequency is 1/2h.

12}

10f

h
T

ke A ke A ke e

o

A A A A A A A

00 0.2 04 06 038 1.0
Gaussian signal with

* N =50 samples

ec/h=15

— o/h > 3 1s reasonable
— o/h < 1.5 1s dubious
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Sampling Interval
“Perfect*” (D/A) Reconstruction from Samples

o/h=15 N=50 o/h=25 N=50

12; 7F

10f 5t
[ 5t

8
: ar

6:— N

4t 5t

2f 1

0:, L 1 T 1] O . . . ket et
0.0 0.2 0.4 0.6 0.8 1.0 00 02 04 06 03 10
C 8_

12f :

10;- 6l

8F :

6— 4-_

:

2— b

of A :
A T R ] oL il ) = i

0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8

Red - reconstruction Red - reconstruction
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Gaussian y-Squared Fit

- - - DE
e Significant shoulders ; .
— Gaussian fit does not j
accurately represent the signal 0.1 7
— Beam size (sigma) is too ;
Sma” I:I-"''|'"'|""|-h""'g|"'"'lﬁﬁ_":"-l""
30 40 a0 ]I} Vi a0 40 100
Fit Results
v2 minimization - Parameter Error
o f(x) is a Gaussian at location X SigmaC  |1.976 HE5
with standard deviation o Amp.= OTSF ||0.006
e {m,} are measurements Center = |75.307 ||0.065
* {X,.} are measurement locations Offeat = |0.000 0.000
N
o =arg min ;(Z(X,a, B) = Z[mk — f(X; X, 0, B)]2
X,o,B o1
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Direct RMS Size Calculation

c 3nC 0.2
e Highly sensitive to | .
background noise |
— Direct RMS calculation does . I
not accurately produce beam j ..
; %
Slze I:I-"''I""I""I_.-"‘H""IH‘T-J-"J-I""
— Beam size is two |arge 3040 50 B0 70 B0 90 100
Fit Results
Standard Deviation of Measured Data Parameter Error
« h step length Sigma& (4154  [D.000
» kis (discrete) mean value Amp.= [T 0.000
* {m,} are measurements Center= |74.745 [0.000
 {x,} are measurement locations Offset = |0.000 0.000
" n 1/2 b
—\2
< > :{I;x mk] :{W;(k—k mk]
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Observations
What | Have Seen So Far

Gaussian Fit* Statistical Calculation
I I
unknown | charact. unknown | charact.
Gaussian  Good Good Gaussian Good
Halo Bad Bad Halo Bad Good
Noisy data Good Good Noisy data Bad marginal
Jittery data Good Good Jittery data Bad Bad

» Additional Bayesian analysis (i.e., most probable) gives marginal return
» Critical to know the noise offset for direct statistical calculation

*RMS, or most likely, fits
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Computations Beam Position
Involving Profile Data ¢ Beam Size

e Twiss Parameters

& Wireanalysis - Untitled.text
File Edit View Window Help

[ Load and View Data | Analyze Data | TwissFit | Twiss Control

Add New Wirescan File File Marre Wire Dfit | Wit | Hfit Plot
CialsersiduaiProjectai0mnSnsiProfl.. |DTL_DiagWs160 2,867 0.778] 1.414 ]
Clear Data Tahle CialsersiduaiProjectal0mnSnsiProfl.. |DTL_Diag 5248 1.326) 1.325 1.019 ]
CialsersiduaiProjectal0mnSnsiProfl.. |DTL_Diag 5334 1.059 0.8 1.092 ]
CialsersiduaiProjectal0mnSnsiProfl.. |DTL_DiagW5428 1.279] 0.665| 0631 ]
CialsersiduaiProjectai0rmnSnsiProfl.. |DTL_Diag 5524 1.228| 0901 1.01 ]
‘le Linear Values |v | | Plot Selected Profiles
oL Horizontal oL “ertical oL Diagonal
0.3 0.3 0.3
0.2 9 024 02
019 01 4 01
07 04 o
-0 -0 -01
T T T T T T T T T T T T T T LA Raaax Ania RARRIRALAS LA AR ROARY LR
30 40 40 6O 7O 80 90 100110 30 40 50 6O YD 80 90 100110 4050 60 70 80 90 10011012013014050
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Measurement Model

e Measurement Process
— Each measurement mk is taken during one macro-pulse

— A stepper motor advances the profile device step length h after which the
next measurement is made

— We assume the beam is reproducible, that is, each beam pulse is identical
to the previous.

— (Gaussian white noise process with mean M and variance V.
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Profile Data

Processing and Data Analysis

We wish to infer beam properties from Wire Scanner
collected profile data. - scan direction

However — can think of profile data as \ /

3-view, 1-dimension tomography

—Data contain limited amount of
information

—Profile data have noise, jitter,
missing data points, etc. - ) ®

",‘b’éém pipe beam
We want to recover...

. This is a reasonable expectation.
e Beam Position p

e Beam Size o The difficulty ar_ises bgcause we have so
many data, and it’s noisy ....
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Measurement Model

e Each sample contains noise from
— Electronics
— Jitter, etc.

o If the jitter is minimal, then it is reasonable to model the noise as
a Gaussian white noise process W with mean B and variance V*.

— Each measurement m, will be composed of the (actual) sampled
projection** f, and a noise component W,

mk — fk +Wk

e The white noise assumption implies
— W, =W for all k (i.e., the noise is position independent)

* The noise can be characterized by a calibration experiment (no beam)

**This assumes that the beam is pulse reproducible
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Centroid Location (Beam Position)

27
e Let ubethe beam centroid position (i.e., beam position)

+b/2
jxf (x) dx
) S, (N)
— b/2 ~h 1
H +b/2 SO(N)
jf(x)dx

-b/2

where the S, are the sampled summations

N
Sa(N)= > Kk"f,
k=1
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Expected Beta (Beam Size)

28
e Letobethe beam size
b2 " 1b/2 16
j X2 f (x) dx j xf (x) dx :
2 _ -bi2 | b2 o h? Sz(N)+h2{51(N)}
+b/2 +b/2 SO(N) SO(N)
jf(x)dx jf(x)dx
/2 | _b/2

e Once again we include the noise process and from our
measurements m,}

So(N) So(N)

N
where S, (N) = Z:kzmk
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The Problem - Ha

What is the Beam Size?

lo

Determining beam size can be a very subjective process

Direct calculation with manual

Direct calculation using {m,} processing
0.2 | d 02
L -
] ™ 1 -
0.1 7 * 0.1 7 B
- ) ] L ) L)
. -1' '-' .
I:I ! L I-.-I 'H‘ T IE-“-‘ d-I i T I:I - "'-T' "I"
30 40 a0 G0 i an 40 100 a1l 70 80 40
Fit Results Fit Results L b
abor
Parameter Error Parameter Value Error .
sigma€ [4154  )o.000 sigma = ({2895 ~ oon Intensive!
_—
Amp. = 0.000 0.000 Amp. = T 0.000 |
Center = 74748 0.000 CE“tEf= T#eﬁz DDDD
Fit Results
Parameter Value Error
Sigma= |1.516 ¢ ooss— '—’
Amp. = 0158 0.006
Center = |75.307 0.065 H H
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The Problem - Jittery Data

e How to compute beam size

_ ] Fit Results
— Do we trust a Gaussian fit?
) Parameter VYalue Error
— Data smoothing? Sigma= |2.281 0.245
: Amp.= (0,112 0.008
e Reject measurement altogether? c:::er - Giao oo
— How to automatically identify bad data | oreet= 0000 o000
0.2 |
] o
01 1
| L
Iy .hih!: I
'D'1-----|----|-'---|' T N L L B B LR
A0 50 GO FO B0 80 100 110 120 130 140
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