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Outline

• Profile Data

• The Problem

• Model of Measurement Random Process

• Computations of Beam Position μ and Size σ

• Conclusions

• Open Questions
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Say f(x,y) is the transverse 
beam distribution.

The projection, or profile, of f
in the horizontal plane is

When measuring the projection 
fx is sampled at axis locations 

xk = kh

with constant sampling 
intervals h, and N samples.

Thus, the sampled profile is 
given as the discrete set

{fx,k} = {fx(x1), fx(x2),…, fx(xN)}

Profile Data
1D Projections of the Beam Distribution
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Prototypical Profile Device – The Wire Scanner
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We drop the subscript x from here out
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beam pipe
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wire y

wire z

scan direction

beam

Profile Data 
Objectives: What Do We Want?
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Wire ScannerAt this point, we only want two 
quantities from the measured data

• Beam Position μ

• Beam Size σ

This seemed like a reasonable 
expectation, however…

• The data are noisy

• Beam jitter

• Missing data points

• Many data sets
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The Problem 
Processing many data sets for Simple Parameters
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Can computation of the beam position and 
size from profile data be automated?

Original Goal: Estimate Twiss 
parameters 

Within SNS CCL:

• First compute beam sizes
– 5 wire scanners with 3 wires
– 15 data sets of ~150 samples 

each

• Most effort is manual data 
processing

• Looking for bad data sets
• Removing errant data points
• Clipping noise baseline
• Reject bad fits, Etc.

• We just want 10 numbers !

SNS Wire Analysis Application
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Beam Properties and Measurement Model
Computing Beam Position μ and Size σ

– If we know the sampled profile fk exactly, normalizing by the step length 
h the position μ and size σ are approximated*

– However, we do not know the {fk }.

The Measurement Model
– Each measurement mk contains noise from electronics, jitter, etc.
– Model as Gaussian white-noise process W with mean B and variance V**

– We must account for this noise when approximating μ and σ.
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kkk Wfm +=

* That is, μ and σ are in units of step length h – not necessarily integers
**The noise can be characterized by a calibration experiment (w/o beam)
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Measurement Random Process

• Gaussian noise process p.d.f. is

– Then probability that measurement process Mk has value mk is the same as 
the probability that noise process W has value mk − fk

– Assuming independent events, probability (p.d.f.) of the data set {mk} is

This is the p.d.f. of our measurement random process
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Technique #1
Direct Computation with Measurement Data
• Inspecting P({mk}) , the sample set {fk} that maximizes the probability of 

obtaining measurement set {mk} is fk = mk − B for all k
– Compute position μ and size σ directly from measurement data {mk – B} 

– However, {mk} is a sampling from a random process, we must characterize 
statistical properties of computations involving these samples…

Defining computations*                         We get
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• Approximate μ and σ with measured

which are the expected values
– If W is ergodic these approximations get 

better as N → ∞

• The variances in these values are 
dominated by N1(0)V and N2(μ)V

– Nn is exponentially increasing as N → ∞
– Nn is huge for typical  measurements

• Although the expected values are 
exactly μ and σ, the variances 
become enormous as N →∞.

– V < σ × 10−7 for ~10% accuracy 
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Is there any way around this??

Technique #1
Direct Computation with Measurement Data
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Technique #2
Assuming a Known Profile for fk

• Assume a profile for f(x) which is parameterized by μ and σ
– Apply Bayesian techniques to estimate parameters μ and σ

– Example: Take f as a Gaussian – must add amplitude parameter A

– We want to know (A,μ,σ) given {mk} - Bayes says that

– Look for A, μ, and σ that maximize P({mk}|A,μσ,B,V)P(A,μ,σ)
• We know P({mk}|A,μσ,B,V)
• The prior distribution P(A,μ,σ) = P(A,σ) P(μ) can be shown to be uniform 

because A and σ are related by Aσ ∝ Q, the beam charge
• The result is a χ-squared maximization of P({mk}|A,μσ,B,V)
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We can also eliminate the need for noise characterization by including B as a parameter
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80 points

Gaussian RMS Fit
Gaussian-Like Profile

• Measurement
– N = 80 sample points
– Noise floor B ~ 0.00369
– A ~ max {mk} – B = 0.180

• Gaussian Fit
– A = 0.164
– μ = 69.2
– σ = 1.99
– B = 0.00478

• Computed
– A = 0.0834
– μ = 69.0
– σ = 4.33.
– B = 0.00369
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Measurement

Measurement and fit
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Gaussian RMS Fit
Profile with Halo
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• Measurement
– N = 50 sample points
– Noise floor B ~ 0.00387
– A ~ max {mk} – B =  0.260

• Gaussian Fit
– A = 0.236
– μ = 35.9
– σ = 1.81
– B = 0.00874

• Computed
– A = 0.245
– μ = 35.3
– σ = 2.14
– B = 0.00387

Measurement

Measurement and fit

Only 50 points
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Gaussian RMS Fit
Extremely Noisy Profile
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• Measurement
– N = 90 sample points
– Noise floor B ~ 0.00107
– A ~ max {mk} – B = 0.149

• Gaussian Fit
– A = 0.112
– μ = 50.3
– σ = 2.26
– B = 0.00181

• Computed
–

Measurement

Measurement and fit

http://www.wreckedexotics.com/newphotos/exotics/2murcielago_20080715_100.shtml
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Conclusions
• Direct Computation of μ and σ from Measurements 

– Highly sensitive to noise and thus dubious
– Requires calibration measurement (twice as long)

• Gaussian Fits 
– Direct RMS data fit is the most probable from Bayesian standpoint
– Work well without halo
– Good noise rejection
– Seems to prefer core of the beam
– Include noise baseline as parameter to avoid calibration (faster)

• Data Smoothing (not covered)
– Significant loss of original signal

• Data Sampling (not covered) – Spectral power loss ∝ exp[−σ2/h]
– An h providing > 3 samples per σ gives good signal reconstruction
– An h with < 1.5 samples per σ gives poor signal reconstruction
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The Crux

• A primary motivation for determining μ and σ is halo mitigation
– A primary cause of halo formation is poor matching between  

accelerating structures
– We originally wanted μ and σ to compute Twiss parameters in order to re-

adjustment quadrupole strengths for a good match (automated matching?)
– Gaussian fits are suspect when halo is present

• Gaussian Fitting: You need a good match in order to match
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Open Questions

Without Visual Inspection (That is, Automatically…)

• How do we recognize corrupted data?
– Reject it if we find it?

• How do we recognize halo?
– If we can recognize halo how do we compute μ and σ?

• Is there a better assumed profile than Gaussian?
– Maxwell-Boltzmann is known to be stationary but no analytic form exists

• More fundamentally – is it possible to automate matching?
– If so, how? 
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Thank You !

Any ideas, suggestions, comments welcome!
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Sampling Intervals 
Resolving Information Content

Choosing number of samples 
per scan (in order to maintain 
information content)
– Assume Gaussian profile 
– Fourier transform of Gaussian 

with std = σ is Gaussian with 
std = 1/σ

– Nyquist says when sampling at 
interval of h the highest 
frequency is 1/2h.
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⇒ σ/h > 3 is reasonable
⇒ σ/h < 1.5 is dubious

Gaussian signal with
• N = 50 samples
• σ/h = 1.5

2σ
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Sampling Interval
“Perfect*” (D/A) Reconstruction from Samples

Presentation_name

σ/h = 1.5, N = 50

Red - reconstruction Red - reconstruction

σ/h = 2.5, N = 50

*via Shannon sampling theorem
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Gaussian χ-Squared Fit

• Significant shoulders
– Gaussian fit does not 

accurately represent the signal
– Beam size (sigma) is too 

small
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• f(x) is a Gaussian at location ⎯x

with standard deviation σ
• {mk} are measurements
• {xk} are measurement locations
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• Highly sensitive to 
background noise
– Direct RMS calculation does 

not accurately produce beam 
size

– Beam size is two large

Direct RMS Size Calculation
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Standard Deviation of Measured Data
• h step length
• ⎯k is (discrete)  mean value
• {mk} are measurements
• {xk} are measurement locations

Noise amplifying term
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Observations
What I Have Seen So Far

Gaussian Fit*
Noise 
unknown

Noise 
charact.

Gaussian Good Good
Halo Bad Bad
Noisy data Good Good
Jittery data Good Good

Statistical Calculation
Noise 
unknown

Noise 
charact.

Gaussian Bad Good
Halo Bad Good
Noisy data Bad marginal
Jittery data Bad Bad 
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• Additional Bayesian analysis (i.e., most probable) gives marginal return
• Critical to know the noise offset for direct statistical calculation

*RMS, or  most likely, fits
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Computations 
Involving Profile Data

• Beam Position

• Beam Size

• Twiss Parameters
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Measurement Model

• Measurement process
– Each measurement mk is taken during one macro-pulse
– A stepper motor advances the profile device step length h after which the 

next measurement is made
– We assume the beam is reproducible, that is, each beam pulse is identical 

to the previous.
– Gaussian white noise process with mean M and variance V.
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beam pipe

wire x
wire y

wire z

scan direction

beam

Profile Data
Processing and Data Analysis

Presentation_name

Wire ScannerWe wish to infer beam properties from 
collected profile data.

However – can think of profile data as 
3-view, 1-dimension tomography

⇒Data contain limited amount of 
information

⇒Profile data have noise, jitter, 
missing data points, etc.

We want to recover…

• Beam Position μ

• Beam Size σ

This is a reasonable expectation.

The difficulty arises because we have so 
many data, and it’s noisy ….
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Measurement Model

• Each sample contains noise from 
– Electronics
– Jitter, etc.

• If the jitter is minimal, then it is reasonable to model the noise as 
a Gaussian white noise process W with mean B and variance V*.
– Each measurement  mk will be composed of the (actual) sampled 

projection** fk and a noise component Wk

• The white noise assumption implies
– Wk = W for all k (i.e., the noise is position independent)
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* The noise can be characterized by a calibration experiment (no beam)
**This assumes that the beam is pulse reproducible
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Centroid Location (Beam Position)

• Let μ be the beam centroid position (i.e., beam position)

where the Sn are the sampled summations
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Expected Beta (Beam Size)

• Let σ be the beam size

• Once again we include the noise process and from our 
measurements {mk} compute
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Labor 
Intensive!

The Problem – Halo 
What is the Beam Size?

Direct calculation using {mk}
Direct calculation with manual 
processing
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1.516

Gaussian fit result

Determining beam size can be a very subjective process



30 Managed by UT-Battelle
for the Department of Energy

The Problem - Jittery Data

• How to compute beam size
– Do we trust a Gaussian fit?
– Data smoothing?

• Reject measurement altogether?
– How to automatically identify bad data
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