Status and Implementation of Wideband Feedback System for e-p Instabilities in SNS

Craig Deibele, Z. Xie, M. Schulte, S. Assadi

ORNL/SNS is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725

Overview

- Currently using pickup / kicker designed at BNL with small modification to launch.
- Building new matched pickup / kickers.
- 2 PA 1-300 MHz, 400 Watt. Additional one ordered
- Analog system being developed for early deployment*
- Digital ADC/FPGA/DAC system being developed

"Experimental Tests of a Prototype System for Active Damping of the E-P Instability at the LANL PSR," Deibele et. al, WEXC01, PAC 2007+ many others

Motivation and Background

April 2008: Beam Intensity Study - Frequency

1.6

1.4

1.2

0.8

0.6 0.4

0.2

.8

1.6

1.4

1.2

0.8

0.6 0.4

0.2

1.8

1.6 1.4

1.2

8.0

0.6

04

0.2

Presentation name

Vertical instabilities stronger (shown here).

Here Instability does **not** obey theoretical law from Neuffer/Zotter:

 $f \propto \sqrt{N}$

Previous studies for coasting beam only weakly obeyed this law (ECLOUD 2007)

Instability Observations in the Spallation Neutron Source Accumulator Ring -S. Cousineau et. al.

New Electrode Design

New Electrode design

- Signal from electrode launches to cable with better than -30 dB (calculated)
- Profile of electrode with angles simple to manufacture
- < -30 dB coupling from mode to mode
- Getting bids for funding
- TiN coating program beginning with collaboration of NFDD and WVU with Earl Scime

Power Amplifier

New Power Amplifier, 400W, 1-300 MHz

Photos by Intertronic Solutions / Eltac Ltd.

Presentation_name

Amplifier Features

- Complete solid state design.
- Gated to pulse the amplifier (reduce power requirement / heat load in rack)
- S₁₁ < -25 dB
- 4 stages of parallel 100 Watt amplifiers
- Werlatone power combiner on output
- Separate MPS control on current drive + temp sensors to each SiC MESFET.
- Class A operation
- Power supply in each chassis is simple 120V OTS power supply.

Measurements of Amplifier

Stational Laboratory

Measurements by Intertronic Solutions / Eltac Ltd.

Presentation_name

Mixed Signal System Design

FPGA board Setup

- One 10 bit 2 GS/s ADC/DMUX
- One 12 bit 2 GS/s MUX/DAC
- One VME/VXS 3.125 Gbit/s serial I/O links VME rack is simply a power supply
- One Front Panel slot for 2.5Gbit/s UDP Ethernet transceivers
- Two 1 GB DDR SDRAM
- One Xilinx Virtex-II Pro FPGA

System Overview

Analog Feedback Damper System

- Portions of the analog system will be replaced by digital hardware
- New functionality and capabilities will be added

Mixed-Signal Damper System

- The new system combines analog and digital components
- The digital components are clocked at a multiple of the ring frequency (1Mhz)
 - A multiple of 1600 is currently planned for the ADC and DAC
 - The ring frequency may vary slowly over time by up to 10%
- The common clock for the ADC, FPGA, and DAC must have very little skew.
- The overall latency from pickup to kicker is expected to be roughly 4 µsec Z. Xie

15 Managed by UT-Battelle for the Department of Energy

Presentation name

Data Processing on the FPGA

- Each module is programmable and can be bypassed
- Gain multiplier controls overall system gain
- Programmable delay controls the overall system delay
- Comb filter can be 1 or 2 turns of delay

Comb Filters

- The comb filters damp the ring harmonics leaving betatron sidebands, reducing RF power which would be used to also correct the closed orbit,
 - Comb filter output: y[n] = x[n] x[n-k]
 - Comb filter frequency response: $Y(z) = X(z)[1-z^{-k}]$
 - k is set to an integer that is a multiple of the ring frequency (for 1600MHz clock frequency, k = 1600, which corresponds to ~1 μsec delay)

A Comb filter Implementation

Equalizer (FIR Filter)

.

• The FIR Filter computes:
$$y[n] = \sum_{k=1}^{M} b_k \cdot x[n-k]$$

- We expect to have a filter with $256^{k=0}$ taps. A 16-channel parallel FIR filter which has a total of 256*(3/2)^4=1296 taps may be used.
- The FIR filter serves as an equalizer that corrects for dispersion in analog components
 - Electrodes have non-uniform gain verses frequency
 - Amplifiers have phase dispersion
 - Low-pass filters, cables, ADC, and DAC have magnitude and phase dispersion

Presentation name

19 Managed by UT-Battelle for the Department of Energy Z. Xie

Overall System Setup

- Dampening Mode
 - Actively dampening the instability through Triton Board
- Research Mode
 - Capture the instability through National Instrument ADC cards
 - Perform adaptive self-learning algorithm
 - Reconfigure the Triton board for new parameters

20 Managed by UT-Battelle for the Department of Energy Z. Xie

Presentation name

DAC Test Results

ADC->FPGA->DAC Test

- Magnitude Dispersion
 - Measure magnitude linearity from 5Mhz to 500Mhz
- DAC Phase Dispersion
 - AC coupled ADC introduces 50 degree of phase dispersion at 1Mhz
 - Phase dispersion within 20 degrees from 10Mhz to 250Mhz

ADC->FPGA->DAC Test

Outlook

- Looking to have analog system complete and installed in the next 2-3 months for testing / modeling
- Version 0 of the full mixed signal system should be done in 7-8 months
- Full mechanical design of new pickup/kicker complete, going out for bid.
- Cabling and hardware harmonics of ring clock installed. Controls software needs to be implemented
- Racks are getting their AC power installed now.

Finito

