SNS BLM System Overview Detectors, Measurements, Simulations

Alexander Zhukov Saeed Assadi SNS/ORNL

SNS Accelerator Complex

BLMs at SNS

- Major MPS device
 - Fast MPS abort the current beam pulse within 10 μS (hardware – analog integrator), not applicable to RTBT
 - Slow MPS keep average loss reasonable
- Diagnostic device machine tuning
- Activation "planning"
- Activation decaying
- Activation buildup ?
- Halo measurement with the help of WS

Detectors used

- Ion chambers ~300+
- Neutron detectors ~30+
- Low level neutron detector 8
- PMTs ~10+

Ion Chambers

- Argon filled, 113 cc volume, 2 kV bias.
- Response 70 nC/Rad
- Slow ~1 µS (charge collection)

Neutron Detector

- 35 mm poly moderator
- Li (n,alpha)
- Scintillator
- PMT
- 10⁴ 10⁸n/cm²/s
- 0.03eV 3MeV

Low Level Neutron Detector

- 85 mm poly moderator
- B (n,alpha)
- Counter
- 10² 10⁴n/cm²/s
- 0.03eV-10 MeV

6 Managed by UT-Battelle for the Department of Energy

- **Scintillator**
- **PMT**
- Response 50 pC/MeV
- Fast ~10 nS

Neutron Detector vs. Ion Chamber

- Commons
 - Analog output
 - Same electronics, low level software, MPS interface
- Differences
 - Waveform shape (neutron moderation in NDs)
 - Distance range: IC local, ND remote
 - HV controlled dynamic range for NDs
 - Neutron signal originates from beam loss only, in contrast there are several x-ray sources

Challenges: Low energy part of linac

low energy beam (<20MeV)

- IC not sensitive enough
- ND sensitive, but hard to calibrate (no sufficient experimental data for reliable simulation)
- Still the biggest issue
- PMTs are supposed to help

Challenges: WF subtraction

- Cavity X-rays give significant input to loss signal
- The software subtracts the RF only waveform (the beam rep rate is 59.9 Hz to allow one reference signal per 10 seconds)
- Fast MPS is compromised

Challenges: RTBT noise

RTBT noise/EM interference with the beam or image current

HV ON

- Problem is present with beam only
- Gets worse with beam charge increase

Challenges: RTBT noise (continued)

Low Level NDs

- Counter output (solves noise issue)
- Registration of time distribution
 effectively increases dynamic range
- Capable of registering losses from 1 mini-pulse
- Need time to collect statistics
 10 s ~ 600 pulses

WS and halo studies

Attempt to improve WS performance in halo part

- Special scintillating fiber
- Ordinary IC
- Scan of loss signal vs
 WS position gives good measurement around the beam center, but halo shape isn't really detectable
- Optimized fiber is being designed

Activation decaying

14 Managed by UT-Battelle for the Department of Energy

Electronics and Low Level Software

Standard IC & ND amplifier

- High channel density
- Obsolete parts (big problem!)
- 3 gains jumper settable
- VME ADC
 - 24 bits for dynamic range (~10 bits digitizing noise)
 - High channel density
 - 100 kS sampling rate
- VxWorks based EPICS running WF subtraction at 60 Hz
- PMT custom made amplifier/HV boards + cRIO + LabVIEW RT
- Low Level ND LabVIEW on Windows

Electronics and Low Level Software Future

FPGA based WF subtraction

- Test with cRIO based PMTs currently installed
- Increase of sampling rate is desirable
- Choosing FPGA platform
 - VxWorks vs. PXI vs. cRIO ?
- Smart devices for higher beam availability
 - Every detector has its own hot pluggable data acquisition board
 - Complete replacement of 1 channel should not affect other channels (no beam downtime)
 - Full remote configuration: all setup data come from one source (Oracle)

High Level Software

Lossviewer2 (XAL application)

17 Managed by UT-Battelle for the Department of Energy

A. Zhukov SNS BLM System Overview Detectors, Measurements, Simulations WGF04 - HB2008 8/26/2008

8,350 4,750 4,750 4,250 4,000 8,760 8,550 8,550 8,550 8,550

Simulations (MC transport codes)

Ultimate goal Recreate the loss location and absolute value using BLM measurements

Vational Laboratory

Thank you!

